Gradient and GENERIC time evolution towards reduced dynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10418441" target="_blank" >RIV/00216208:11320/20:10418441 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/20:00341215
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dtydDP3JaJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dtydDP3JaJ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1098/rsta.2019.0472" target="_blank" >10.1098/rsta.2019.0472</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gradient and GENERIC time evolution towards reduced dynamics
Popis výsledku v původním jazyce
Reduction of a mesoscopic dynamical theory to equilibrium thermodynamics brings to the latter theory the fundamental thermodynamic relation (i.e. entropy as a function of the thermodynamic state variables). The reduction is made by following the mesoscopic time evolution to its conclusion, i.e. to fixed points at which the time evolution ceases to continue. The approach to fixed points is driven by entropy, that, if evaluated at the fixed points, becomes the thermodynamic entropy. Since the fixed points are parametrized by the thermodynamic state variables (by constants of motion), the thermodynamic entropy arises as a function of the thermodynamic state variables and thus the final outcome of the reduction is the fundamental thermodynamic relation. This reduction process extends also to reductions in which the reduced theory still involves the time evolution (e.g. reduction of kinetic theory to hydrodynamics). The essence of the extension is the replacement of the mesoscopic time evolution of the state variables with the corresponding mesoscopic time evolution of the vector field (i.e. of the fluxes). The fixed point in this flux time evolution is the vector field generating the reduced mesoscopic time evolution. The flux-entropy driving the flux time evolution becomes, if evaluated at the fixed point, the flux fundamental thermodynamic relation in the reduced dynamical theory. We show that the flux-entropy is a potential related to the entropy production. This article is part of the theme issue 'Fundamental aspects of nonequilibrium thermodynamics'.
Název v anglickém jazyce
Gradient and GENERIC time evolution towards reduced dynamics
Popis výsledku anglicky
Reduction of a mesoscopic dynamical theory to equilibrium thermodynamics brings to the latter theory the fundamental thermodynamic relation (i.e. entropy as a function of the thermodynamic state variables). The reduction is made by following the mesoscopic time evolution to its conclusion, i.e. to fixed points at which the time evolution ceases to continue. The approach to fixed points is driven by entropy, that, if evaluated at the fixed points, becomes the thermodynamic entropy. Since the fixed points are parametrized by the thermodynamic state variables (by constants of motion), the thermodynamic entropy arises as a function of the thermodynamic state variables and thus the final outcome of the reduction is the fundamental thermodynamic relation. This reduction process extends also to reductions in which the reduced theory still involves the time evolution (e.g. reduction of kinetic theory to hydrodynamics). The essence of the extension is the replacement of the mesoscopic time evolution of the state variables with the corresponding mesoscopic time evolution of the vector field (i.e. of the fluxes). The fixed point in this flux time evolution is the vector field generating the reduced mesoscopic time evolution. The flux-entropy driving the flux time evolution becomes, if evaluated at the fixed point, the flux fundamental thermodynamic relation in the reduced dynamical theory. We show that the flux-entropy is a potential related to the entropy production. This article is part of the theme issue 'Fundamental aspects of nonequilibrium thermodynamics'.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-15498Y" target="_blank" >GJ17-15498Y: Víceškálová nerovnovážná termodynamika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
ISSN
1364-503X
e-ISSN
—
Svazek periodika
378
Číslo periodika v rámci svazku
2170
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
22
Strana od-do
20190472
Kód UT WoS článku
000528728000006
EID výsledku v databázi Scopus
2-s2.0-85082565761