Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On Efficient Numerical Solution of Linear Algebraic Systems Arising in Goal-Oriented Error Estimates

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419200" target="_blank" >RIV/00216208:11320/20:10419200 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=y53rf3rVyf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=y53rf3rVyf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10915-020-01188-y" target="_blank" >10.1007/s10915-020-01188-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On Efficient Numerical Solution of Linear Algebraic Systems Arising in Goal-Oriented Error Estimates

  • Popis výsledku v původním jazyce

    We deal with the numerical solution of linear partial differential equations (PDEs) with focus on the goal-oriented error estimates including algebraic errors arising by an inaccurate solution of the corresponding algebraic systems. The goal-oriented error estimates require the solution of the primal as well as dual algebraic systems. We solve both systems simultaneously using the bi-conjugate gradient method which allows to control the algebraic errors of both systems. We develop a stopping criterion which is cheap to evaluate and guarantees that the estimation of the algebraic error is smaller than the estimation of the discretization error. Using this criterion and an adaptive mesh refinement technique, we obtain an efficient and robust method for the numerical solution of PDEs, which is demonstrated by several numerical experiments.

  • Název v anglickém jazyce

    On Efficient Numerical Solution of Linear Algebraic Systems Arising in Goal-Oriented Error Estimates

  • Popis výsledku anglicky

    We deal with the numerical solution of linear partial differential equations (PDEs) with focus on the goal-oriented error estimates including algebraic errors arising by an inaccurate solution of the corresponding algebraic systems. The goal-oriented error estimates require the solution of the primal as well as dual algebraic systems. We solve both systems simultaneously using the bi-conjugate gradient method which allows to control the algebraic errors of both systems. We develop a stopping criterion which is cheap to evaluate and guarantees that the estimation of the algebraic error is smaller than the estimation of the discretization error. Using this criterion and an adaptive mesh refinement technique, we obtain an efficient and robust method for the numerical solution of PDEs, which is demonstrated by several numerical experiments.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Scientific Computing

  • ISSN

    0885-7474

  • e-ISSN

  • Svazek periodika

    83

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    5

  • Kód UT WoS článku

    000522128600002

  • EID výsledku v databázi Scopus

    2-s2.0-85082059857