Weak and strong consistency of an interval comparison matrix
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419298" target="_blank" >RIV/00216208:11320/20:10419298 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-62509-2_2" target="_blank" >https://doi.org/10.1007/978-3-030-62509-2_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-62509-2_2" target="_blank" >10.1007/978-3-030-62509-2_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Weak and strong consistency of an interval comparison matrix
Popis výsledku v původním jazyce
We consider interval-valued pairwise comparison matrices and two types of consistency - weak (consistency for at least one realization) and strong (acceptable consistency for all realizations). Regarding weak consistency, we comment on the paper [Y. Dong and E. Herrera-Viedma, Consistency-Driven Automatic Methodology to Set Interval Numerical Scales of 2-Tuple Linguistic Term Sets and Its Use in the Linguistic GDM With Preference Relation, IEEE Trans. Cybern., 45(4):780-792, 2015], where, among other results, a characterization of weak consistency was proposed. We show by a counterexample that in general the presented condition is not sufficient for weak consistency. It provides a full characterization only for matrices up to size of three. We also show that the problem of having a closed form expression for weak consistency is closely related with P-completeness theory and that an optimization version of the problem is indeed P-complete. Regarding strong consistency, we present a sufficient condition and a necessary condition, supplemented by a small numerical study on their efficiency. We leave a complete characterization as an open problem.
Název v anglickém jazyce
Weak and strong consistency of an interval comparison matrix
Popis výsledku anglicky
We consider interval-valued pairwise comparison matrices and two types of consistency - weak (consistency for at least one realization) and strong (acceptable consistency for all realizations). Regarding weak consistency, we comment on the paper [Y. Dong and E. Herrera-Viedma, Consistency-Driven Automatic Methodology to Set Interval Numerical Scales of 2-Tuple Linguistic Term Sets and Its Use in the Linguistic GDM With Preference Relation, IEEE Trans. Cybern., 45(4):780-792, 2015], where, among other results, a characterization of weak consistency was proposed. We show by a counterexample that in general the presented condition is not sufficient for weak consistency. It provides a full characterization only for matrices up to size of three. We also show that the problem of having a closed form expression for weak consistency is closely related with P-completeness theory and that an optimization version of the problem is indeed P-complete. Regarding strong consistency, we present a sufficient condition and a necessary condition, supplemented by a small numerical study on their efficiency. We leave a complete characterization as an open problem.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-04735S" target="_blank" >GA18-04735S: Nové přístupy pro relaxační a aproximační techniky v deterministické globální optimalizaci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Integrated Uncertainty in Knowledge Modelling and Decision Making
ISBN
978-3-030-62509-2
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
11
Strana od-do
15-25
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Phuket, Thailand
Datum konání akce
11. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—