Change-point detection in a linear model by adaptive fused quantile method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419906" target="_blank" >RIV/00216208:11320/20:10419906 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZErJE_Vrm~" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZErJE_Vrm~</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/sjos.12412" target="_blank" >10.1111/sjos.12412</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Change-point detection in a linear model by adaptive fused quantile method
Popis výsledku v původním jazyce
A novel approach to quantile estimation in multivariate linear regression models with change-points is proposed: the change-point detection and the model estimation are both performed automatically, by adopting either the quantile-fused penalty or the adaptive version of the quantile-fused penalty. These two methods combine the idea of the check function used for the quantile estimation and the L1 penalization principle known from the signal processing and, unlike some standard approaches, the presented methods go beyond typical assumptions usually required for the model errors, such as sub- Gaussian or normal distribution. They can effectively handle heavy-tailed random error distributions, and, in general, they offer a more complex view on the data as one can obtain any conditional quantile of the target distribution, not just the conditional mean. The consistency of detection is proved and proper convergence rates for the parameter estimates are derived. The empirical performance is investigated via an extensive comparative simulation study and practical utilization is demonstrated using a real data example.
Název v anglickém jazyce
Change-point detection in a linear model by adaptive fused quantile method
Popis výsledku anglicky
A novel approach to quantile estimation in multivariate linear regression models with change-points is proposed: the change-point detection and the model estimation are both performed automatically, by adopting either the quantile-fused penalty or the adaptive version of the quantile-fused penalty. These two methods combine the idea of the check function used for the quantile estimation and the L1 penalization principle known from the signal processing and, unlike some standard approaches, the presented methods go beyond typical assumptions usually required for the model errors, such as sub- Gaussian or normal distribution. They can effectively handle heavy-tailed random error distributions, and, in general, they offer a more complex view on the data as one can obtain any conditional quantile of the target distribution, not just the conditional mean. The consistency of detection is proved and proper convergence rates for the parameter estimates are derived. The empirical performance is investigated via an extensive comparative simulation study and practical utilization is demonstrated using a real data example.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scandinavian Journal of Statistics
ISSN
0303-6898
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
39
Strana od-do
425-463
Kód UT WoS článku
000538731300005
EID výsledku v databázi Scopus
2-s2.0-85076482428