Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Change-point detection in a linear model by adaptive fused quantile method

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419906" target="_blank" >RIV/00216208:11320/20:10419906 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZErJE_Vrm~" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZErJE_Vrm~</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/sjos.12412" target="_blank" >10.1111/sjos.12412</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Change-point detection in a linear model by adaptive fused quantile method

  • Popis výsledku v původním jazyce

    A novel approach to quantile estimation in multivariate linear regression models with change-points is proposed: the change-point detection and the model estimation are both performed automatically, by adopting either the quantile-fused penalty or the adaptive version of the quantile-fused penalty. These two methods combine the idea of the check function used for the quantile estimation and the L1 penalization principle known from the signal processing and, unlike some standard approaches, the presented methods go beyond typical assumptions usually required for the model errors, such as sub- Gaussian or normal distribution. They can effectively handle heavy-tailed random error distributions, and, in general, they offer a more complex view on the data as one can obtain any conditional quantile of the target distribution, not just the conditional mean. The consistency of detection is proved and proper convergence rates for the parameter estimates are derived. The empirical performance is investigated via an extensive comparative simulation study and practical utilization is demonstrated using a real data example.

  • Název v anglickém jazyce

    Change-point detection in a linear model by adaptive fused quantile method

  • Popis výsledku anglicky

    A novel approach to quantile estimation in multivariate linear regression models with change-points is proposed: the change-point detection and the model estimation are both performed automatically, by adopting either the quantile-fused penalty or the adaptive version of the quantile-fused penalty. These two methods combine the idea of the check function used for the quantile estimation and the L1 penalization principle known from the signal processing and, unlike some standard approaches, the presented methods go beyond typical assumptions usually required for the model errors, such as sub- Gaussian or normal distribution. They can effectively handle heavy-tailed random error distributions, and, in general, they offer a more complex view on the data as one can obtain any conditional quantile of the target distribution, not just the conditional mean. The consistency of detection is proved and proper convergence rates for the parameter estimates are derived. The empirical performance is investigated via an extensive comparative simulation study and practical utilization is demonstrated using a real data example.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scandinavian Journal of Statistics

  • ISSN

    0303-6898

  • e-ISSN

  • Svazek periodika

    47

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    39

  • Strana od-do

    425-463

  • Kód UT WoS článku

    000538731300005

  • EID výsledku v databázi Scopus

    2-s2.0-85076482428