Changepoint Detection by the Quantile LASSO Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10419907" target="_blank" >RIV/00216208:11320/19:10419907 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0tRrkyjza7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0tRrkyjza7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s42519-019-0078-z" target="_blank" >10.1007/s42519-019-0078-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Changepoint Detection by the Quantile LASSO Method
Popis výsledku v původním jazyce
A simultaneous changepoint detection and estimation in a piece-wise constant model is a common task in modern statistics. If, in addition, the whole estimation can be performed fully automatically in a single step without requiring any statistical tests or a posteriori methods, it also becomes a very interesting but challenging idea. In this paper, we introduce the estimation method based on the quantile LASSO approach. Unlike standard LASSO approaches, our method does not rely on classical assumptions common for the model errors, sub-Gaussian or Normal distributions in particular. The quantile LASSO method can handle, for instance, outlying observations or heavy-tailed error distributions, and it provides, in general, a more complex insight into the data: any conditional quantile can be obtained rather than providing just the conditional mean. Under some reasonable assumptions, the number of changepoints is not underestimated with probability tenting to one. Moreover, if the number of changepoints is estimated correctly, the quantile LASSO changepoint estimators are consistent. Numerical simulations demonstrate the theoretical results, and they illustrate the empirical performance and the robust favor of the proposed quantile LASSO method. The real example is used to show a practical applicability of the proposed method.
Název v anglickém jazyce
Changepoint Detection by the Quantile LASSO Method
Popis výsledku anglicky
A simultaneous changepoint detection and estimation in a piece-wise constant model is a common task in modern statistics. If, in addition, the whole estimation can be performed fully automatically in a single step without requiring any statistical tests or a posteriori methods, it also becomes a very interesting but challenging idea. In this paper, we introduce the estimation method based on the quantile LASSO approach. Unlike standard LASSO approaches, our method does not rely on classical assumptions common for the model errors, sub-Gaussian or Normal distributions in particular. The quantile LASSO method can handle, for instance, outlying observations or heavy-tailed error distributions, and it provides, in general, a more complex insight into the data: any conditional quantile can be obtained rather than providing just the conditional mean. Under some reasonable assumptions, the number of changepoints is not underestimated with probability tenting to one. Moreover, if the number of changepoints is estimated correctly, the quantile LASSO changepoint estimators are consistent. Numerical simulations demonstrate the theoretical results, and they illustrate the empirical performance and the robust favor of the proposed quantile LASSO method. The real example is used to show a practical applicability of the proposed method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Statistical Theory and Practice
ISSN
1559-8608
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
38
Strana od-do
11
Kód UT WoS článku
000511595900001
EID výsledku v databázi Scopus
2-s2.0-85076500007