Implied Volatility Surface Estimation via Quantile Regularization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10434749" target="_blank" >RIV/00216208:11320/20:10434749 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-48814-7_4" target="_blank" >https://doi.org/10.1007/978-3-030-48814-7_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-48814-7_4" target="_blank" >10.1007/978-3-030-48814-7_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implied Volatility Surface Estimation via Quantile Regularization
Popis výsledku v původním jazyce
The implied volatility function and the implied volatility surface are both key tools for analyzing financial and derivative markets and various approaches were proposed to estimate theses quantities. On the other hand, theoretical, practical, and also computational pitfalls occur in most of them. An innovative estimation method based on an idea of a sparse estimation and an atomic pursuit approach is introduced to overcome some of these limits: the quantile LASSO estimation implies robustness with respect to common market anomalies; the panel data structure allows for a time dependent modeling; changepoints introduce some additional flexibility in order to capture some sudden changes in the market and linear constraints ensure the arbitrage-free validity; last but not least, the interpolated implied volatility concept overcomes the problem of consecutive maturities when observing the implied volatility over time. Some theoretical backgrounds for the quantile LASSO estimation method are presented, the idea of the interpolated volatilities is introduced, and the proposed estimation approach is applied to estimate the implied volatility of the Erste Group Bank AG call options quoted in EUREX Deutschland Market.
Název v anglickém jazyce
Implied Volatility Surface Estimation via Quantile Regularization
Popis výsledku anglicky
The implied volatility function and the implied volatility surface are both key tools for analyzing financial and derivative markets and various approaches were proposed to estimate theses quantities. On the other hand, theoretical, practical, and also computational pitfalls occur in most of them. An innovative estimation method based on an idea of a sparse estimation and an atomic pursuit approach is introduced to overcome some of these limits: the quantile LASSO estimation implies robustness with respect to common market anomalies; the panel data structure allows for a time dependent modeling; changepoints introduce some additional flexibility in order to capture some sudden changes in the market and linear constraints ensure the arbitrage-free validity; last but not least, the interpolated implied volatility concept overcomes the problem of consecutive maturities when observing the implied volatility over time. Some theoretical backgrounds for the quantile LASSO estimation method are presented, the idea of the interpolated volatilities is introduced, and the proposed estimation approach is applied to estimate the implied volatility of the Erste Group Bank AG call options quoted in EUREX Deutschland Market.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-00522Y" target="_blank" >GJ18-00522Y: Pokročilé Ekonometrické Modely pro Oceňování Opcí – AdEMOP</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Springer Proceedings in Mathematics and Statistics
ISBN
978-3-030-48813-0
ISSN
2194-1009
e-ISSN
—
Počet stran výsledku
15
Strana od-do
73-87
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Liberec
Datum konání akce
16. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—