Quantile LASSO in arbitrage-free option markets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419914" target="_blank" >RIV/00216208:11320/20:10419914 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=e_ZlvuHGHJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=e_ZlvuHGHJ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecosta.2020.05.006" target="_blank" >10.1016/j.ecosta.2020.05.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantile LASSO in arbitrage-free option markets
Popis výsledku v původním jazyce
The option price function and the implied volatility surface are both key tools for the derivative pricing strategies and the financial market analysis. Modern and sophisticated methods are used but their credibility suffered due to the financial crisis in 2007-2010. Instead, a method based on a standard semiparametric smoothing is proposed and the overall complexity and robustness (with respect to various anomalies, such as bid-ask spreads, discrete ticks in price, non-synchronous trading, or even heavy tailed error distributions) is achieved by using the conditional quantile estimation. The overestimation and the sparsity principle are adopted to introduce additional flexibility and the LASSO-type penalty and the set of well-defined linear constraints are employed to produce the final estimate which complies with the arbitrage-free criteria dictated by the financial theory. The theoretical results of the model are discussed, finite sample properties are investigated via a simulation study and a practical application of the proposed method is illustrated for the Apple Inc. (AAPL) call options.
Název v anglickém jazyce
Quantile LASSO in arbitrage-free option markets
Popis výsledku anglicky
The option price function and the implied volatility surface are both key tools for the derivative pricing strategies and the financial market analysis. Modern and sophisticated methods are used but their credibility suffered due to the financial crisis in 2007-2010. Instead, a method based on a standard semiparametric smoothing is proposed and the overall complexity and robustness (with respect to various anomalies, such as bid-ask spreads, discrete ticks in price, non-synchronous trading, or even heavy tailed error distributions) is achieved by using the conditional quantile estimation. The overestimation and the sparsity principle are adopted to introduce additional flexibility and the LASSO-type penalty and the set of well-defined linear constraints are employed to produce the final estimate which complies with the arbitrage-free criteria dictated by the financial theory. The theoretical results of the model are discussed, finite sample properties are investigated via a simulation study and a practical application of the proposed method is illustrated for the Apple Inc. (AAPL) call options.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-00522Y" target="_blank" >GJ18-00522Y: Pokročilé Ekonometrické Modely pro Oceňování Opcí – AdEMOP</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Econometrics and Statistics [online]
ISSN
2452-3062
e-ISSN
—
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000636803000009
EID výsledku v databázi Scopus
2-s2.0-85087980387