Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Reconfiguration graph for vertex colourings of weakly chordal graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420121" target="_blank" >RIV/00216208:11320/20:10420121 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XHHsm.4XcA" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XHHsm.4XcA</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2019.111733" target="_blank" >10.1016/j.disc.2019.111733</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Reconfiguration graph for vertex colourings of weakly chordal graphs

  • Popis výsledku v původním jazyce

    The reconfiguration graph R-k(G) of the k-colourings of a graph G contains as its vertex set the k-colourings of G and two colourings are joined by an edge if they differ in colour on just one vertex of G. Bonamy et al. (2014) have shown that if G is a k-colourable chordal graph on n vertices, then Rk+1 (G) has diameter O(n(2)), and asked whether the same statement holds for k-colourable perfect graphs. This was answered negatively by Bonamy and Bousquet (2014). In this note, we address this question for k-colourable weakly chordal graphs, a well-known class of graphs that falls between chordal graphs and perfect graphs. We show that for each k &gt;= 3 there is a k-colourable weakly chordal graph G such that Rk+1(G) is disconnected. On the positive side, we introduce a subclass of k-colourable weakly chordal graphs which we call k-colourable compact graphs and show that for each k-colourable compact graph G on n vertices, Rk+1(G) has diameter O(n(2)). We show that this class contains all k-colourable co-chordal graphs and when k = 3 all 3-colourable (P-5, (P-5) over bar, C-5)-free graphs. We also mention some open problems. (C) 2019 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Reconfiguration graph for vertex colourings of weakly chordal graphs

  • Popis výsledku anglicky

    The reconfiguration graph R-k(G) of the k-colourings of a graph G contains as its vertex set the k-colourings of G and two colourings are joined by an edge if they differ in colour on just one vertex of G. Bonamy et al. (2014) have shown that if G is a k-colourable chordal graph on n vertices, then Rk+1 (G) has diameter O(n(2)), and asked whether the same statement holds for k-colourable perfect graphs. This was answered negatively by Bonamy and Bousquet (2014). In this note, we address this question for k-colourable weakly chordal graphs, a well-known class of graphs that falls between chordal graphs and perfect graphs. We show that for each k &gt;= 3 there is a k-colourable weakly chordal graph G such that Rk+1(G) is disconnected. On the positive side, we introduce a subclass of k-colourable weakly chordal graphs which we call k-colourable compact graphs and show that for each k-colourable compact graph G on n vertices, Rk+1(G) has diameter O(n(2)). We show that this class contains all k-colourable co-chordal graphs and when k = 3 all 3-colourable (P-5, (P-5) over bar, C-5)-free graphs. We also mention some open problems. (C) 2019 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

  • Svazek periodika

    343

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    6

  • Strana od-do

    111733

  • Kód UT WoS článku

    000510947800012

  • EID výsledku v databázi Scopus

    2-s2.0-85075264930