On Polynomial-Time Combinatorial Algorithms for Maximum L-Bounded Flow
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420162" target="_blank" >RIV/00216208:11320/20:10420162 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_Js47XY46d" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_Js47XY46d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7155/jgaa.00534" target="_blank" >10.7155/jgaa.00534</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Polynomial-Time Combinatorial Algorithms for Maximum L-Bounded Flow
Popis výsledku v původním jazyce
Given a graph G = (V, E) with two distinguished vertices s, (formula presented) and an integer L, an L-bounded flow is a flow between s and t that can be decomposed into paths of length at most L. In the maximum L-bounded flow problem the task is to find a maximum L-bounded flow between a given pair of vertices in the input graph. For networks with unit edge lengths (or, more generally, with polynomially bounded edge lengths, with respect to the number of vertices), the problem can be solved in polynomial time using linear programming. However, as far as we know, no polynomial-time combinatorial algorithm1 for the L-bounded flow is known. For general edge lengths, the problem is NP-hard. The only attempt, that we are aware of, to describe a combinatorial algorithm for the maximum L-bounded flow problem was done by Koubek and Říha in 1981. Unfortunately, their paper contains substantial flaws and the algorithm does not work; in the first part of this paper, we describe these problems. In the second part of this paper we describe a combinatorial algorithm based on the exponential length method that finds a (1+ε)-approximation of the maximum L-bounded flow in time O(ε-2 m2 L log L) where m is the number of edges in the graph. Moreover, we show that this approach works even for the NP-hard generalization of the maximum L-bounded flow problem in which each edge has a length.
Název v anglickém jazyce
On Polynomial-Time Combinatorial Algorithms for Maximum L-Bounded Flow
Popis výsledku anglicky
Given a graph G = (V, E) with two distinguished vertices s, (formula presented) and an integer L, an L-bounded flow is a flow between s and t that can be decomposed into paths of length at most L. In the maximum L-bounded flow problem the task is to find a maximum L-bounded flow between a given pair of vertices in the input graph. For networks with unit edge lengths (or, more generally, with polynomially bounded edge lengths, with respect to the number of vertices), the problem can be solved in polynomial time using linear programming. However, as far as we know, no polynomial-time combinatorial algorithm1 for the L-bounded flow is known. For general edge lengths, the problem is NP-hard. The only attempt, that we are aware of, to describe a combinatorial algorithm for the maximum L-bounded flow problem was done by Koubek and Říha in 1981. Unfortunately, their paper contains substantial flaws and the algorithm does not work; in the first part of this paper, we describe these problems. In the second part of this paper we describe a combinatorial algorithm based on the exponential length method that finds a (1+ε)-approximation of the maximum L-bounded flow in time O(ε-2 m2 L log L) where m is the number of edges in the graph. Moreover, we show that this approach works even for the NP-hard generalization of the maximum L-bounded flow problem in which each edge has a length.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Graph Algorithms and Applications
ISSN
1526-1719
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
303-322
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85088278363