Polynomial Time Algorithms for Tracking Path Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00358547" target="_blank" >RIV/68407700:21240/22:00358547 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00453-022-00931-1" target="_blank" >https://doi.org/10.1007/s00453-022-00931-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-022-00931-1" target="_blank" >10.1007/s00453-022-00931-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polynomial Time Algorithms for Tracking Path Problems
Popis výsledku v původním jazyce
Given a graph G, and terminal vertices s and t, the Tracking Paths problem asks to compute a set of minimum number of vertices to be marked as trackers, such that the sequence of trackers encountered in each s-t path is unique. Tracking Paths is NP-hard in both directed and undirected graphs in general. In this paper we give a collection of polynomial time algorithms for some restricted versions of Tracking Paths. We prove that Tracking Paths is polynomial time solvable for undirected chordal graphs and tournament graphs. We also show that Tracking Paths is NP-hard in graphs with bounded maximum degree Δ >= 6 , and give a 2 (Δ + 1) -approximate algorithm for this case. Further, we give a polynomial time algorithm which, given an undirected graph G, a tracking set T? V(G) , and a sequence of trackers π, returns the unique s-t path in G that corresponds to π, if one exists. Finally we analyze the version of tracking s-t paths where paths are tracked using edges instead of vertices, and we give a polynomial time algorithm for the same.
Název v anglickém jazyce
Polynomial Time Algorithms for Tracking Path Problems
Popis výsledku anglicky
Given a graph G, and terminal vertices s and t, the Tracking Paths problem asks to compute a set of minimum number of vertices to be marked as trackers, such that the sequence of trackers encountered in each s-t path is unique. Tracking Paths is NP-hard in both directed and undirected graphs in general. In this paper we give a collection of polynomial time algorithms for some restricted versions of Tracking Paths. We prove that Tracking Paths is polynomial time solvable for undirected chordal graphs and tournament graphs. We also show that Tracking Paths is NP-hard in graphs with bounded maximum degree Δ >= 6 , and give a 2 (Δ + 1) -approximate algorithm for this case. Further, we give a polynomial time algorithm which, given an undirected graph G, a tracking set T? V(G) , and a sequence of trackers π, returns the unique s-t path in G that corresponds to π, if one exists. Finally we analyze the version of tracking s-t paths where paths are tracked using edges instead of vertices, and we give a polynomial time algorithm for the same.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithmica
ISSN
0178-4617
e-ISSN
1432-0541
Svazek periodika
84
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
23
Strana od-do
1548-1570
Kód UT WoS článku
000752837200002
EID výsledku v databázi Scopus
2-s2.0-85124341700