Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Constant factor approximation for tracking paths and fault tolerant feedback vertex set

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00365740" target="_blank" >RIV/68407700:21240/23:00365740 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.disopt.2022.100756" target="_blank" >https://doi.org/10.1016/j.disopt.2022.100756</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disopt.2022.100756" target="_blank" >10.1016/j.disopt.2022.100756</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Constant factor approximation for tracking paths and fault tolerant feedback vertex set

  • Popis výsledku v původním jazyce

    Consider a vertex-weighted graph G with a source s and a target t. TRACKING PATHS requires finding a minimum weight set of vertices (trackers) such that the sequence of trackers in each path from s to t is unique. In this work, we derive a factor 6-approximation algorithm for TRACKING PATHS in weighted graphs and a factor 4-approximation algorithm if the input is unweighted. This is the first constant factor approximation for this problem. While doing so, we also study approximation of the closely related r-FAULT TOLERANT FEEDBACK VERTEX SET problem. There, for a fixed integer r and a given vertex-weighted graph G, the task is to find a minimum weight set of vertices intersecting every cycle of G in at least r+1 vertices. We give a factor O(r) approximation algorithm for r-FAULT TOLERANT FEEDBACK VERTEX SET if r is a constant.

  • Název v anglickém jazyce

    Constant factor approximation for tracking paths and fault tolerant feedback vertex set

  • Popis výsledku anglicky

    Consider a vertex-weighted graph G with a source s and a target t. TRACKING PATHS requires finding a minimum weight set of vertices (trackers) such that the sequence of trackers in each path from s to t is unique. In this work, we derive a factor 6-approximation algorithm for TRACKING PATHS in weighted graphs and a factor 4-approximation algorithm if the input is unweighted. This is the first constant factor approximation for this problem. While doing so, we also study approximation of the closely related r-FAULT TOLERANT FEEDBACK VERTEX SET problem. There, for a fixed integer r and a given vertex-weighted graph G, the task is to find a minimum weight set of vertices intersecting every cycle of G in at least r+1 vertices. We give a factor O(r) approximation algorithm for r-FAULT TOLERANT FEEDBACK VERTEX SET if r is a constant.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Optimization

  • ISSN

    1572-5286

  • e-ISSN

    1873-636X

  • Svazek periodika

    47

  • Číslo periodika v rámci svazku

    100756

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

    000961089600001

  • EID výsledku v databázi Scopus

    2-s2.0-85144452746