On Average-Case Hardness in TFNP from One-Way Functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420337" target="_blank" >RIV/00216208:11320/20:10420337 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-64381-2_22" target="_blank" >https://doi.org/10.1007/978-3-030-64381-2_22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-64381-2_22" target="_blank" >10.1007/978-3-030-64381-2_22</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Average-Case Hardness in TFNP from One-Way Functions
Popis výsledku v původním jazyce
The complexity class TFNP consists of all NP search problems that are total in the sense that a solution is guaranteed to exist for all instances. Over the years, this class has proved to illuminate surprising connections among several diverse subfields of mathematics like combinatorics, computational topology, and algorithmic game theory. More recently, we are starting to better understand its interplay with cryptography. We know that certain cryptographic primitives (e.g., one-way permutations, collision-resistant hash functions, or indistinguishability obfuscation) imply average-case hardness in TFNP and its important subclasses. However, its relationship with the most basic cryptographic primitive -- i.e., one-way functions (OWFs) -- still remains unresolved. Under an additional complexity theoretic assumption, OWFs imply hardness in TFNP (Hubáček, Naor, and Yogev, ITCS 2017). It is also known that average-case hardness in most structured subclasses of TFNP does not imply any form of cryptographic hardness in a black-box way (Rosen, Segev, and Shahaf, TCC 2017) and, thus, one-way functions might be sufficient. Specifically, no negative result which would rule out basing average-case hardness in TFNP solely on OWFs is currently known. In this work, we further explore the interplay between TFNP and OWFs and give the first negative results. As our main result, we show that there cannot exist constructions of average-case (and, in fact, even worst-case) hard TFNP problem from OWFs with a certain type of simple black-box security reductions. The class of reductions we rule out is, however, rich enough to capture many of the currently known cryptographic hardness results for TFNP. Our results are established using the framework of black-box separations (Impagliazzo and Rudich, STOC 1989) and involve a novel application of the reconstruction paradigm (Gennaro and Trevisan, FOCS 2000).
Název v anglickém jazyce
On Average-Case Hardness in TFNP from One-Way Functions
Popis výsledku anglicky
The complexity class TFNP consists of all NP search problems that are total in the sense that a solution is guaranteed to exist for all instances. Over the years, this class has proved to illuminate surprising connections among several diverse subfields of mathematics like combinatorics, computational topology, and algorithmic game theory. More recently, we are starting to better understand its interplay with cryptography. We know that certain cryptographic primitives (e.g., one-way permutations, collision-resistant hash functions, or indistinguishability obfuscation) imply average-case hardness in TFNP and its important subclasses. However, its relationship with the most basic cryptographic primitive -- i.e., one-way functions (OWFs) -- still remains unresolved. Under an additional complexity theoretic assumption, OWFs imply hardness in TFNP (Hubáček, Naor, and Yogev, ITCS 2017). It is also known that average-case hardness in most structured subclasses of TFNP does not imply any form of cryptographic hardness in a black-box way (Rosen, Segev, and Shahaf, TCC 2017) and, thus, one-way functions might be sufficient. Specifically, no negative result which would rule out basing average-case hardness in TFNP solely on OWFs is currently known. In this work, we further explore the interplay between TFNP and OWFs and give the first negative results. As our main result, we show that there cannot exist constructions of average-case (and, in fact, even worst-case) hard TFNP problem from OWFs with a certain type of simple black-box security reductions. The class of reductions we rule out is, however, rich enough to capture many of the currently known cryptographic hardness results for TFNP. Our results are established using the framework of black-box separations (Impagliazzo and Rudich, STOC 1989) and involve a novel application of the reconstruction paradigm (Gennaro and Trevisan, FOCS 2000).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Theory of Cryptography. TCC 2020
ISBN
978-3-030-64381-2
ISSN
—
e-ISSN
—
Počet stran výsledku
25
Strana od-do
614-638
Název nakladatele
Springer, Cham
Místo vydání
Neuveden
Místo konání akce
virtuální
Datum konání akce
16. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—