Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

HARDNESS OF CONTINUOUS LOCAL SEARCH: QUERY COMPLEXITY AND CRYPTOGRAPHIC LOWER BOUNDS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422409" target="_blank" >RIV/00216208:11320/20:10422409 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=S.~4IGyEkb" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=S.~4IGyEkb</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/17M1118014" target="_blank" >10.1137/17M1118014</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    HARDNESS OF CONTINUOUS LOCAL SEARCH: QUERY COMPLEXITY AND CRYPTOGRAPHIC LOWER BOUNDS

  • Popis výsledku v původním jazyce

    Local search proved to be an extremely useful tool when facing hard optimization problems (e.g., via the simplex algorithm, simulated annealing, or genetic algorithms). Although powerful, it has its limitations: there are functions for which exponentially many queries are needed to find a local optimum. In many contexts, the optimization problem is defined by a continuous function which might offer an advantage when performing the local search. This leads us to study the following natural question: How hard is continuous local search? The computational complexity of such search problems is captured by the complexity class CLS [C. Daskalakis and C. H. Papadimitriou, Proceedings of SODA&apos;11, 2011], which is contained in the intersection of PLS and PPAD, two important subclasses of TFNP (the class of NP search problems with a guaranteed solution). In this work, we show the first hardness results for CLS (the smallest nontrivial class among the currently defined subclasses of TFNP). Our hardness results are in terms of black-box (where only oracle access to the function is given) and white-box (where the function is represented succinctly by a circuit). In the black-box case, we show instances for which any (computationally unbounded) randomized algorithm must perform exponentially many queries in order to find a local optimum. In the white-box case, we show hardness for computationally bounded algorithms under cryptographic assumptions. Our results demonstrate a strong conceptual barrier precluding design of efficient algorithms for solving local search problems even over continuous domains. As our main technical contribution we introduce a new total search problem which we call END-OF-METERED-LINE. The special structure of END-OF-METERED-LINE enables us to (1) show that it is contained in CLS, (2) prove hardness for it in both the black-box and the white-box setting, and (3) extend to CLS a variety of results previously known only for PPAD.

  • Název v anglickém jazyce

    HARDNESS OF CONTINUOUS LOCAL SEARCH: QUERY COMPLEXITY AND CRYPTOGRAPHIC LOWER BOUNDS

  • Popis výsledku anglicky

    Local search proved to be an extremely useful tool when facing hard optimization problems (e.g., via the simplex algorithm, simulated annealing, or genetic algorithms). Although powerful, it has its limitations: there are functions for which exponentially many queries are needed to find a local optimum. In many contexts, the optimization problem is defined by a continuous function which might offer an advantage when performing the local search. This leads us to study the following natural question: How hard is continuous local search? The computational complexity of such search problems is captured by the complexity class CLS [C. Daskalakis and C. H. Papadimitriou, Proceedings of SODA&apos;11, 2011], which is contained in the intersection of PLS and PPAD, two important subclasses of TFNP (the class of NP search problems with a guaranteed solution). In this work, we show the first hardness results for CLS (the smallest nontrivial class among the currently defined subclasses of TFNP). Our hardness results are in terms of black-box (where only oracle access to the function is given) and white-box (where the function is represented succinctly by a circuit). In the black-box case, we show instances for which any (computationally unbounded) randomized algorithm must perform exponentially many queries in order to find a local optimum. In the white-box case, we show hardness for computationally bounded algorithms under cryptographic assumptions. Our results demonstrate a strong conceptual barrier precluding design of efficient algorithms for solving local search problems even over continuous domains. As our main technical contribution we introduce a new total search problem which we call END-OF-METERED-LINE. The special structure of END-OF-METERED-LINE enables us to (1) show that it is contained in CLS, (2) prove hardness for it in both the black-box and the white-box setting, and (3) extend to CLS a variety of results previously known only for PPAD.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Computing

  • ISSN

    0097-5397

  • e-ISSN

  • Svazek periodika

    49

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    45

  • Strana od-do

    1128-1172

  • Kód UT WoS článku

    000600680900004

  • EID výsledku v databázi Scopus

    2-s2.0-85098653670