TFNP intersections through the lens of feasible disjunction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00582265" target="_blank" >RIV/67985840:_____/24:00582265 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.ITCS.2024.63" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ITCS.2024.63</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ITCS.2024.63" target="_blank" >10.4230/LIPIcs.ITCS.2024.63</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TFNP intersections through the lens of feasible disjunction
Popis výsledku v původním jazyce
The complexity class CLS was introduced by Daskalakis and Papadimitriou (SODA 2010) to capture the computational complexity of important TFNP problems solvable by local search over continuous domains and, thus, lying in both PLS and PPAD. It was later shown that, e.g., the problem of computing fixed points guaranteed by Banach’s fixed point theorem is CLS-complete by Daskalakis et al. (STOC 2018). Recently, Fearnley et al. (J. ACM 2023) disproved the plausible conjecture of Daskalakis and Papadimitriou that CLS is a proper subclass of PLS∩PPAD by proving that CLS = PLS∩PPAD. To study the possibility of other collapses in TFNP, we connect classes formed as the intersection of existing subclasses of TFNP with the phenomenon of feasible disjunction in propositional proof complexity, where a proof system has the feasible disjunction property if, whenever a disjunction F ∨ G has a small proof, and F and G have no variables in common, then either F or G has a small proof. Based on some known and some new results about feasible disjunction, we separate the classes formed by intersecting the classical subclasses PLS, PPA, PPAD, PPADS, PPP and CLS. We also give the first examples of proof systems which have the feasible interpolation property, but not the feasible disjunction property.
Název v anglickém jazyce
TFNP intersections through the lens of feasible disjunction
Popis výsledku anglicky
The complexity class CLS was introduced by Daskalakis and Papadimitriou (SODA 2010) to capture the computational complexity of important TFNP problems solvable by local search over continuous domains and, thus, lying in both PLS and PPAD. It was later shown that, e.g., the problem of computing fixed points guaranteed by Banach’s fixed point theorem is CLS-complete by Daskalakis et al. (STOC 2018). Recently, Fearnley et al. (J. ACM 2023) disproved the plausible conjecture of Daskalakis and Papadimitriou that CLS is a proper subclass of PLS∩PPAD by proving that CLS = PLS∩PPAD. To study the possibility of other collapses in TFNP, we connect classes formed as the intersection of existing subclasses of TFNP with the phenomenon of feasible disjunction in propositional proof complexity, where a proof system has the feasible disjunction property if, whenever a disjunction F ∨ G has a small proof, and F and G have no variables in common, then either F or G has a small proof. Based on some known and some new results about feasible disjunction, we separate the classes formed by intersecting the classical subclasses PLS, PPA, PPAD, PPADS, PPP and CLS. We also give the first examples of proof systems which have the feasible interpolation property, but not the feasible disjunction property.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
15th Innovations in Theoretical Computer Science Conference (ITCS 2024)
ISBN
978-3-95977-309-6
ISSN
—
e-ISSN
—
Počet stran výsledku
24
Strana od-do
63
Název nakladatele
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl
Místo konání akce
Berkeley
Datum konání akce
30. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001300389400063