ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10487986" target="_blank" >RIV/00216208:11320/24:10487986 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y.rqPZkIUZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y.rqPZkIUZ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/bsl.2023.40" target="_blank" >10.1017/bsl.2023.40</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS
Popis výsledku v původním jazyce
Cook and Reckhow [5] pointed out that $mathcal {N}mathcal {P} neq comathcal {N}mathcal {P}$ iff there is no propositional proof system that admits polynomial size proofs of all tautologies. The theory of proof complexity generators aims at constructing sets of tautologies hard for strong and possibly for all proof systems. We focus on a conjecture from [16] in foundations of the theory that there is a proof complexity generator hard for all proof systems. This can be equivalently formulated (for p-time generators) without a reference to proof complexity notions as follows:There exists a p-time function g stretching each input by one bit such that its range $rng(g)$ intersects all infinite $mathcal {N}mathcal {P}$ sets. We consider several facets of this conjecture, including its links to bounded arithmetic (witnessing and independence results), to time-bounded Kolmogorov complexity, to feasible disjunction property of propositional proof systems and to complexity of proof search. We argue that a specific gadget generator from [18] is a good candidate for g. We define a new hardness property of generators, the $bigvee $ -hardness, and show that one specific gadget generator is the $bigvee $ -hardest (w.r.t. any sufficiently strong proof system). We define the class of feasibly infinite $mathcal {N}mathcal {P}$ sets and show, assuming a hypothesis from circuit complexity, that the conjecture holds for all feasibly infinite $mathcal {N}mathcal {P}$ sets.
Název v anglickém jazyce
ON THE EXISTENCE OF STRONG PROOF COMPLEXITY GENERATORS
Popis výsledku anglicky
Cook and Reckhow [5] pointed out that $mathcal {N}mathcal {P} neq comathcal {N}mathcal {P}$ iff there is no propositional proof system that admits polynomial size proofs of all tautologies. The theory of proof complexity generators aims at constructing sets of tautologies hard for strong and possibly for all proof systems. We focus on a conjecture from [16] in foundations of the theory that there is a proof complexity generator hard for all proof systems. This can be equivalently formulated (for p-time generators) without a reference to proof complexity notions as follows:There exists a p-time function g stretching each input by one bit such that its range $rng(g)$ intersects all infinite $mathcal {N}mathcal {P}$ sets. We consider several facets of this conjecture, including its links to bounded arithmetic (witnessing and independence results), to time-bounded Kolmogorov complexity, to feasible disjunction property of propositional proof systems and to complexity of proof search. We argue that a specific gadget generator from [18] is a good candidate for g. We define a new hardness property of generators, the $bigvee $ -hardness, and show that one specific gadget generator is the $bigvee $ -hardest (w.r.t. any sufficiently strong proof system). We define the class of feasibly infinite $mathcal {N}mathcal {P}$ sets and show, assuming a hypothesis from circuit complexity, that the conjecture holds for all feasibly infinite $mathcal {N}mathcal {P}$ sets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bulletin of Symbolic Logic
ISSN
1079-8986
e-ISSN
1943-5894
Svazek periodika
30
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
20-40
Kód UT WoS článku
001195451000001
EID výsledku v databázi Scopus
2-s2.0-85178007044