Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effective algorithm for simulations of layer-by-layer growth during pulsed-laser deposition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420441" target="_blank" >RIV/00216208:11320/20:10420441 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rcgp79-X3g" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rcgp79-X3g</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevE.102.063305" target="_blank" >10.1103/PhysRevE.102.063305</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effective algorithm for simulations of layer-by-layer growth during pulsed-laser deposition

  • Popis výsledku v původním jazyce

    The atomistic simulation of materials growing in the layer-by-layer mode by the pulsed-laser deposition is a significant challenge mainly due to the short timescales in which the fastest processes on the surface occur together with long periods between pulses. We present a kinetic Monte Carlo algorithm which overcomes the scaling problem by approximation of fast diffusion and by neglecting complex chemical processes. The atomic diffusion is modeled as a two-dimensional gas of material units on each layer. The model is based on a few elementary processes-the condensation of units on the surface, their dissolution back to the gas, and interlayer transport, which can be influenced by the Ehrlich-Schwoebel barrier. With these simplifications, the computational time of the algorithm scales only linearly with the size of the substrate while describing physically relevant growth kinetics. We demonstrate that the simplified model is suitable for simulations of layered growth of thin films in the range from quasicontinuous deposition to low-frequency cases. The model is successfully implemented to provide an alternative explanation of the time evolution of layer coverages by interlayer transport after pulses of deposition experimentally observed during perovskite growth [G. Eres et al., Phys. Rev. B 84, 195467 (2011)].

  • Název v anglickém jazyce

    Effective algorithm for simulations of layer-by-layer growth during pulsed-laser deposition

  • Popis výsledku anglicky

    The atomistic simulation of materials growing in the layer-by-layer mode by the pulsed-laser deposition is a significant challenge mainly due to the short timescales in which the fastest processes on the surface occur together with long periods between pulses. We present a kinetic Monte Carlo algorithm which overcomes the scaling problem by approximation of fast diffusion and by neglecting complex chemical processes. The atomic diffusion is modeled as a two-dimensional gas of material units on each layer. The model is based on a few elementary processes-the condensation of units on the surface, their dissolution back to the gas, and interlayer transport, which can be influenced by the Ehrlich-Schwoebel barrier. With these simplifications, the computational time of the algorithm scales only linearly with the size of the substrate while describing physically relevant growth kinetics. We demonstrate that the simplified model is suitable for simulations of layered growth of thin films in the range from quasicontinuous deposition to low-frequency cases. The model is successfully implemented to provide an alternative explanation of the time evolution of layer coverages by interlayer transport after pulses of deposition experimentally observed during perovskite growth [G. Eres et al., Phys. Rev. B 84, 195467 (2011)].

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC19-10799J" target="_blank" >GC19-10799J: Studium růstové kinetiky multiferoických komplexních oxidů metodami rtg rozptylu in-situ při pulsní laserové depozici</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review E

  • ISSN

    2470-0045

  • e-ISSN

  • Svazek periodika

    102

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    063305

  • Kód UT WoS článku

    000600286900010

  • EID výsledku v databázi Scopus

    2-s2.0-85098109834