Effective algorithm for simulations of layer-by-layer growth during pulsed-laser deposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420441" target="_blank" >RIV/00216208:11320/20:10420441 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rcgp79-X3g" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rcgp79-X3g</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.102.063305" target="_blank" >10.1103/PhysRevE.102.063305</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effective algorithm for simulations of layer-by-layer growth during pulsed-laser deposition
Popis výsledku v původním jazyce
The atomistic simulation of materials growing in the layer-by-layer mode by the pulsed-laser deposition is a significant challenge mainly due to the short timescales in which the fastest processes on the surface occur together with long periods between pulses. We present a kinetic Monte Carlo algorithm which overcomes the scaling problem by approximation of fast diffusion and by neglecting complex chemical processes. The atomic diffusion is modeled as a two-dimensional gas of material units on each layer. The model is based on a few elementary processes-the condensation of units on the surface, their dissolution back to the gas, and interlayer transport, which can be influenced by the Ehrlich-Schwoebel barrier. With these simplifications, the computational time of the algorithm scales only linearly with the size of the substrate while describing physically relevant growth kinetics. We demonstrate that the simplified model is suitable for simulations of layered growth of thin films in the range from quasicontinuous deposition to low-frequency cases. The model is successfully implemented to provide an alternative explanation of the time evolution of layer coverages by interlayer transport after pulses of deposition experimentally observed during perovskite growth [G. Eres et al., Phys. Rev. B 84, 195467 (2011)].
Název v anglickém jazyce
Effective algorithm for simulations of layer-by-layer growth during pulsed-laser deposition
Popis výsledku anglicky
The atomistic simulation of materials growing in the layer-by-layer mode by the pulsed-laser deposition is a significant challenge mainly due to the short timescales in which the fastest processes on the surface occur together with long periods between pulses. We present a kinetic Monte Carlo algorithm which overcomes the scaling problem by approximation of fast diffusion and by neglecting complex chemical processes. The atomic diffusion is modeled as a two-dimensional gas of material units on each layer. The model is based on a few elementary processes-the condensation of units on the surface, their dissolution back to the gas, and interlayer transport, which can be influenced by the Ehrlich-Schwoebel barrier. With these simplifications, the computational time of the algorithm scales only linearly with the size of the substrate while describing physically relevant growth kinetics. We demonstrate that the simplified model is suitable for simulations of layered growth of thin films in the range from quasicontinuous deposition to low-frequency cases. The model is successfully implemented to provide an alternative explanation of the time evolution of layer coverages by interlayer transport after pulses of deposition experimentally observed during perovskite growth [G. Eres et al., Phys. Rev. B 84, 195467 (2011)].
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC19-10799J" target="_blank" >GC19-10799J: Studium růstové kinetiky multiferoických komplexních oxidů metodami rtg rozptylu in-situ při pulsní laserové depozici</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review E
ISSN
2470-0045
e-ISSN
—
Svazek periodika
102
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
063305
Kód UT WoS článku
000600286900010
EID výsledku v databázi Scopus
2-s2.0-85098109834