Random Phase Approximation Applied to Many-Body Noncovalent Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421411" target="_blank" >RIV/00216208:11320/20:10421411 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1h.YqPLYv8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1h.YqPLYv8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.9b00979" target="_blank" >10.1021/acs.jctc.9b00979</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Random Phase Approximation Applied to Many-Body Noncovalent Systems
Popis výsledku v původním jazyce
The random phase approximation (RPA) has received considerable interest in the field of modeling systems where noncovalent interactions are important. Its advantages over widely used density functional theory (DFT) approximations are the exact treatment of exchange and the description of long-range correlation. In this work, we address two open questions related to RPA. First, we demonstrate how accurately RPA describes nonadditive interactions encountered in many-body expansion of a binding energy. We consider three body nonadditive energies in molecular and atomic clusters. Second, we address how the accuracy of RPA depends on input provided by different DFT models, without resorting to self-consistent RPA procedure, which is currently impractical for calculations employing periodic boundary conditions. We find that RPA based on the SCAN0 and PBE0 models, that is, hybrid DFT, achieves an overall accuracy between CCSD and MP3 on a data set of molecular trimers from Rezac et al. (J. Chem. Theory. Comput. 2015, 11, 3065). Finally, many-body expansion for molecular clusters and solids often leads to a large number of small contributions that need to be calculated with high precision. We therefore present a cubic-scaling (or self-consistent field (SCF)-like) implementation of RPA in atomic basis set, which is designed for calculations with high numerical precision.
Název v anglickém jazyce
Random Phase Approximation Applied to Many-Body Noncovalent Systems
Popis výsledku anglicky
The random phase approximation (RPA) has received considerable interest in the field of modeling systems where noncovalent interactions are important. Its advantages over widely used density functional theory (DFT) approximations are the exact treatment of exchange and the description of long-range correlation. In this work, we address two open questions related to RPA. First, we demonstrate how accurately RPA describes nonadditive interactions encountered in many-body expansion of a binding energy. We consider three body nonadditive energies in molecular and atomic clusters. Second, we address how the accuracy of RPA depends on input provided by different DFT models, without resorting to self-consistent RPA procedure, which is currently impractical for calculations employing periodic boundary conditions. We find that RPA based on the SCAN0 and PBE0 models, that is, hybrid DFT, achieves an overall accuracy between CCSD and MP3 on a data set of molecular trimers from Rezac et al. (J. Chem. Theory. Comput. 2015, 11, 3065). Finally, many-body expansion for molecular clusters and solids often leads to a large number of small contributions that need to be calculated with high precision. We therefore present a cubic-scaling (or self-consistent field (SCF)-like) implementation of RPA in atomic basis set, which is designed for calculations with high numerical precision.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
427-442
Kód UT WoS článku
000508474800033
EID výsledku v databázi Scopus
2-s2.0-85076239480