Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Random Phase Approximation Applied to Many-Body Noncovalent Systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421411" target="_blank" >RIV/00216208:11320/20:10421411 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1h.YqPLYv8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1h.YqPLYv8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jctc.9b00979" target="_blank" >10.1021/acs.jctc.9b00979</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Random Phase Approximation Applied to Many-Body Noncovalent Systems

  • Popis výsledku v původním jazyce

    The random phase approximation (RPA) has received considerable interest in the field of modeling systems where noncovalent interactions are important. Its advantages over widely used density functional theory (DFT) approximations are the exact treatment of exchange and the description of long-range correlation. In this work, we address two open questions related to RPA. First, we demonstrate how accurately RPA describes nonadditive interactions encountered in many-body expansion of a binding energy. We consider three body nonadditive energies in molecular and atomic clusters. Second, we address how the accuracy of RPA depends on input provided by different DFT models, without resorting to self-consistent RPA procedure, which is currently impractical for calculations employing periodic boundary conditions. We find that RPA based on the SCAN0 and PBE0 models, that is, hybrid DFT, achieves an overall accuracy between CCSD and MP3 on a data set of molecular trimers from Rezac et al. (J. Chem. Theory. Comput. 2015, 11, 3065). Finally, many-body expansion for molecular clusters and solids often leads to a large number of small contributions that need to be calculated with high precision. We therefore present a cubic-scaling (or self-consistent field (SCF)-like) implementation of RPA in atomic basis set, which is designed for calculations with high numerical precision.

  • Název v anglickém jazyce

    Random Phase Approximation Applied to Many-Body Noncovalent Systems

  • Popis výsledku anglicky

    The random phase approximation (RPA) has received considerable interest in the field of modeling systems where noncovalent interactions are important. Its advantages over widely used density functional theory (DFT) approximations are the exact treatment of exchange and the description of long-range correlation. In this work, we address two open questions related to RPA. First, we demonstrate how accurately RPA describes nonadditive interactions encountered in many-body expansion of a binding energy. We consider three body nonadditive energies in molecular and atomic clusters. Second, we address how the accuracy of RPA depends on input provided by different DFT models, without resorting to self-consistent RPA procedure, which is currently impractical for calculations employing periodic boundary conditions. We find that RPA based on the SCAN0 and PBE0 models, that is, hybrid DFT, achieves an overall accuracy between CCSD and MP3 on a data set of molecular trimers from Rezac et al. (J. Chem. Theory. Comput. 2015, 11, 3065). Finally, many-body expansion for molecular clusters and solids often leads to a large number of small contributions that need to be calculated with high precision. We therefore present a cubic-scaling (or self-consistent field (SCF)-like) implementation of RPA in atomic basis set, which is designed for calculations with high numerical precision.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Theory and Computation

  • ISSN

    1549-9618

  • e-ISSN

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    427-442

  • Kód UT WoS článku

    000508474800033

  • EID výsledku v databázi Scopus

    2-s2.0-85076239480