Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436184" target="_blank" >RIV/00216208:11320/21:10436184 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.RJH3p1kxz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.RJH3p1kxz</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jctc.0c00966" target="_blank" >10.1021/acs.jctc.0c00966</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage

  • Popis výsledku v původním jazyce

    The many-body expansion (MBE) of energies of molecular clusters or solids offers a way to detect and analyze errors of theoretical methods that could go unnoticed if only the total energy of the system was considered. In this regard, the interaction between the methane molecule and its enclosing dodecahedral water cage, CH4 center dot center dot center dot(H2O)(20), is a stringent test for approximate methods, including density functional theory (DFT) approximations. Hybrid and semilocal DFT approximations behave erratically for this system, with three- and four-body nonadditive terms having neither the correct sign nor magnitude. Here, we analyze to what extent these qualitative errors in different MBE contributions are conveyed to post-Kohn-Sham random-phase approximation (RPA), which uses approximate Kohn-Sham orbitals as its input. The results reveal a correlation between the quality of the DFT input states and the RPA results. Moreover, the renormalized singles energy (RSE) corrections play a crucial role in all orders of the many-body expansion. For dimers, RSE corrects the RPA underbinding for every tested Kohn-Sham model: generalized-gradient approximation (GGA), meta-GGA, (meta-)GGA hybrids, as well as the optimized effective potential at the correlated level. Remarkably, the inclusion of singles in RPA can also correct the wrong signs of three- and four-body nonadditive energies as well as mitigate the excessive higher-order contributions to the many-body expansion. The RPA errors are dominated by the contributions of compact clusters. As a workable method for large systems, we propose to replace those compact contributions with CCSD(T) energies and to sum up the remaining many-body contributions up to infinity with supermolecular or periodic RPA. As a demonstration of this approach, we show that for RPA(PBE0)+RSE it suffices to apply CCSD(T) to dimers and 30 compact, hydrogen-bonded trimers to get the methane-water cage interaction energy to within 1.6% of the reference value.

  • Název v anglickém jazyce

    Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage

  • Popis výsledku anglicky

    The many-body expansion (MBE) of energies of molecular clusters or solids offers a way to detect and analyze errors of theoretical methods that could go unnoticed if only the total energy of the system was considered. In this regard, the interaction between the methane molecule and its enclosing dodecahedral water cage, CH4 center dot center dot center dot(H2O)(20), is a stringent test for approximate methods, including density functional theory (DFT) approximations. Hybrid and semilocal DFT approximations behave erratically for this system, with three- and four-body nonadditive terms having neither the correct sign nor magnitude. Here, we analyze to what extent these qualitative errors in different MBE contributions are conveyed to post-Kohn-Sham random-phase approximation (RPA), which uses approximate Kohn-Sham orbitals as its input. The results reveal a correlation between the quality of the DFT input states and the RPA results. Moreover, the renormalized singles energy (RSE) corrections play a crucial role in all orders of the many-body expansion. For dimers, RSE corrects the RPA underbinding for every tested Kohn-Sham model: generalized-gradient approximation (GGA), meta-GGA, (meta-)GGA hybrids, as well as the optimized effective potential at the correlated level. Remarkably, the inclusion of singles in RPA can also correct the wrong signs of three- and four-body nonadditive energies as well as mitigate the excessive higher-order contributions to the many-body expansion. The RPA errors are dominated by the contributions of compact clusters. As a workable method for large systems, we propose to replace those compact contributions with CCSD(T) energies and to sum up the remaining many-body contributions up to infinity with supermolecular or periodic RPA. As a demonstration of this approach, we show that for RPA(PBE0)+RSE it suffices to apply CCSD(T) to dimers and 30 compact, hydrogen-bonded trimers to get the methane-water cage interaction energy to within 1.6% of the reference value.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Theory and Computation

  • ISSN

    1549-9618

  • e-ISSN

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    804-817

  • Kód UT WoS článku

    000634678200018

  • EID výsledku v databázi Scopus

    2-s2.0-85100007199