Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Observation of ultrafast impact ionization in diamond driven by mid-infrared femtosecond pulses

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421437" target="_blank" >RIV/00216208:11320/20:10421437 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W99r1asurz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W99r1asurz</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0001983" target="_blank" >10.1063/5.0001983</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Observation of ultrafast impact ionization in diamond driven by mid-infrared femtosecond pulses

  • Popis výsledku v původním jazyce

    We report on the observation of ultrafast impact ionization in monocrystalline diamond driven by high-intensity mid-infrared femtosecond laser pulses. The measurements are based on monitoring the excited carrier population during and after the interaction of the pre-excited sample with a strong infrared pulse by transient transmission spectroscopy and photoluminescence measurements. A twofold increase in the initial carrier population due to impact ionization is observed with the peak infrared intensity of 2.5TW/cm(2). The experimental results are supported by numerical simulations of electron dynamics using time-dependent density functional theory, which show that the electrons in the conduction band reach the energy threshold for impact ionization during the interaction with the infrared pulse.

  • Název v anglickém jazyce

    Observation of ultrafast impact ionization in diamond driven by mid-infrared femtosecond pulses

  • Popis výsledku anglicky

    We report on the observation of ultrafast impact ionization in monocrystalline diamond driven by high-intensity mid-infrared femtosecond laser pulses. The measurements are based on monitoring the excited carrier population during and after the interaction of the pre-excited sample with a strong infrared pulse by transient transmission spectroscopy and photoluminescence measurements. A twofold increase in the initial carrier population due to impact ionization is observed with the peak infrared intensity of 2.5TW/cm(2). The experimental results are supported by numerical simulations of electron dynamics using time-dependent density functional theory, which show that the electrons in the conduction band reach the energy threshold for impact ionization during the interaction with the infrared pulse.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ18-10486Y" target="_blank" >GJ18-10486Y: Ultrarychlé procesy v pevných látkách řízené krátkými laserovými pulsy s několika optickými periodami</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Applied Physics

  • ISSN

    0021-8979

  • e-ISSN

  • Svazek periodika

    128

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    015701

  • Kód UT WoS článku

    000551880800001

  • EID výsledku v databázi Scopus

    2-s2.0-85087638085