On Betti numbers of flag complexes with forbidden induced subgraphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421440" target="_blank" >RIV/00216208:11320/20:10421440 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9TSGc2aHvI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9TSGc2aHvI</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S030500411900001X" target="_blank" >10.1017/S030500411900001X</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Betti numbers of flag complexes with forbidden induced subgraphs
Popis výsledku v původním jazyce
We analyse the asymptotic extremal growth rate of the Betti numbers of clique complexes of graphs on n vertices not containing a fixed forbidden induced subgraph H. In particular, we prove a theorem of the alternative: for any H the growth rate achieves exactly one of five possible exponentials, that is, independent of the field of coefficients, the nth root of the maximal total Betti number over n-vertex graphs with no induced copy of H has a limit, as n tends to infinity, and, ranging over all H, exactly five different limits are attained. For the interesting case where H is the 4-cycle, the above limit is 1, and we prove a superpolynomial upper bound.
Název v anglickém jazyce
On Betti numbers of flag complexes with forbidden induced subgraphs
Popis výsledku anglicky
We analyse the asymptotic extremal growth rate of the Betti numbers of clique complexes of graphs on n vertices not containing a fixed forbidden induced subgraph H. In particular, we prove a theorem of the alternative: for any H the growth rate achieves exactly one of five possible exponentials, that is, independent of the field of coefficients, the nth root of the maximal total Betti number over n-vertex graphs with no induced copy of H has a limit, as n tends to infinity, and, ranging over all H, exactly five different limits are attained. For the interesting case where H is the 4-cycle, the above limit is 1, and we prove a superpolynomial upper bound.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ16-01602Y" target="_blank" >GJ16-01602Y: Topologické a geometrické přístupy k permutačním třídám a grafovým vlastnostem</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Proceedings of the Cambridge Philosophical Society
ISSN
0305-0041
e-ISSN
—
Svazek periodika
168
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
34
Strana od-do
567-600
Kód UT WoS článku
000527961800009
EID výsledku v databázi Scopus
—