Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Embeddability in R-3 is NP-hard

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421443" target="_blank" >RIV/00216208:11320/20:10421443 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Qd6bGqbXRj" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Qd6bGqbXRj</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3396593" target="_blank" >10.1145/3396593</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Embeddability in R-3 is NP-hard

  • Popis výsledku v původním jazyce

    We prove that the problem of deciding whether a two- or three-dimensional simplicial complex embeds into R-3 is NP-hard. Our construction also shows that deciding whether a 3-manifold with boundary tori admits an S-3 filling is NP-hard. The former stands in contrast with the lower-dimensional cases, which can be solved in linear time, and the latter with a variety of computational problems in 3-manifold topology, for example, unknot or 3-sphere recognition, which are in NP boolean AND co-NP. (Membership of the latter problem in co-NP assumes the Generalized Riemann Hypotheses.) Our reduction encodes a satisfiability instance into the embeddability problem of a 3-manifold with boundary tori, and relies extensively on techniques from low-dimensional topology, most importantly Dehn fillings of manifolds with boundary tori.

  • Název v anglickém jazyce

    Embeddability in R-3 is NP-hard

  • Popis výsledku anglicky

    We prove that the problem of deciding whether a two- or three-dimensional simplicial complex embeds into R-3 is NP-hard. Our construction also shows that deciding whether a 3-manifold with boundary tori admits an S-3 filling is NP-hard. The former stands in contrast with the lower-dimensional cases, which can be solved in linear time, and the latter with a variety of computational problems in 3-manifold topology, for example, unknot or 3-sphere recognition, which are in NP boolean AND co-NP. (Membership of the latter problem in co-NP assumes the Generalized Riemann Hypotheses.) Our reduction encodes a satisfiability instance into the embeddability problem of a 3-manifold with boundary tori, and relies extensively on techniques from low-dimensional topology, most importantly Dehn fillings of manifolds with boundary tori.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of the ACM

  • ISSN

    0004-5411

  • e-ISSN

  • Svazek periodika

    67

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    20

  • Kód UT WoS článku

    000582595200002

  • EID výsledku v databázi Scopus

    2-s2.0-85090119393