Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Boundedness of classical operators on rearrangement-invariant spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421885" target="_blank" >RIV/00216208:11320/20:10421885 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H_5_VQ13zS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H_5_VQ13zS</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jfa.2019.108341" target="_blank" >10.1016/j.jfa.2019.108341</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Boundedness of classical operators on rearrangement-invariant spaces

  • Popis výsledku v původním jazyce

    We study the behaviour on rearrangement-invariant (r.i.) spaces of such classical operators of interest in harmonic analysis as the Hardy-Littlewood maximal operator (including the fractional version), the Hilbert and Stieltjes transforms, and the Riesz potential. The focus is on sharpness questions, and we present characterisations of the optimal domain (or range) partner spaces when the range (domain) is fixed. When an r.i. partner space exists at all, a complete characterisation of the situation is given. We illustrate the results with a variety of examples of sharp particular results involving customary function spaces. (C) 2019 Elsevier Inc. All rights reserved.

  • Název v anglickém jazyce

    Boundedness of classical operators on rearrangement-invariant spaces

  • Popis výsledku anglicky

    We study the behaviour on rearrangement-invariant (r.i.) spaces of such classical operators of interest in harmonic analysis as the Hardy-Littlewood maximal operator (including the fractional version), the Hilbert and Stieltjes transforms, and the Riesz potential. The focus is on sharpness questions, and we present characterisations of the optimal domain (or range) partner spaces when the range (domain) is fixed. When an r.i. partner space exists at all, a complete characterisation of the situation is given. We illustrate the results with a variety of examples of sharp particular results involving customary function spaces. (C) 2019 Elsevier Inc. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Functional Analysis

  • ISSN

    0022-1236

  • e-ISSN

  • Svazek periodika

    278

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    56

  • Strana od-do

    108341

  • Kód UT WoS článku

    000507143300003

  • EID výsledku v databázi Scopus

    2-s2.0-85075372906