Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improved Bounds on Fourier Entropy and Min-Entropy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422306" target="_blank" >RIV/00216208:11320/20:10422306 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.4230/LIPIcs.STACS.2020.45" target="_blank" >https://doi.org/10.4230/LIPIcs.STACS.2020.45</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2020.45" target="_blank" >10.4230/LIPIcs.STACS.2020.45</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improved Bounds on Fourier Entropy and Min-Entropy

  • Popis výsledku v původním jazyce

    Given a Boolean function f : { -1, l}(n) -&gt; { -1, 1}, define the Fourier distribution to be the distribution on subsets of [n], where each S subset of [n] is sampled with probability (f) over cap (S)(2). The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [24] seeks to relate two fundamental measures associated with the Fourier distribution: does there exist a universal constant C &gt; 0 such that H((f) over cap (2)) &lt;= C . Inf(f), where H((f) over cap (2)) is the Shannon entropy of the Fourier distribution of f and Inf(f) is the total influence of f? In this paper we present three new contributions towards the FEI conjecture: (i) Our first contribution shows that H((f) over cap (2)) &lt;= 2 . aUC(circle plus) (f), where aUC(circle plus) (f) is the average unambiguous parity-certificate complexity of f . This improves upon several bounds shown by Chakraborty et al. [16]. We further improve this bound for unambiguous DNFs. (ii) We next consider the weaker Fourier Min-entropy-Influence (FMEI) conjecture posed by O&apos;Donnell and others [43, 40] which asks if H-infinity ((f) over cap (2)) &lt;= C . lnf(f), where H-infinity ((f) over cap (2)) is the min-entropy of the Fourier distribution. We show H-infinity ((f) over cap (2)) &lt;= 2 . C-min(circle plus)(f), where C-min(circle plus )(f) is the minimum parity certificate complexity of f. We also show that for all epsilon &gt;= 0, we have H-infinity ((f) over cap (2)) &lt;= 2log(parallel to(f) over cap parallel to(1,epsilon) 1(1 - epsilon)) , where parallel to(f) over cap parallel to(1,epsilon )is the approximate spectral norm of f. As a corollary, we verify the FMEI conjecture for the class of read-k DNFs (for constant k). (iii) Our third contribution is to better understand implications of the FEI conjecture for the structure of polynomials that 1/3-approximate a Boolean function on the Boolean cube. We pose a conjecture: no flat polynomial (whose non-zero Fourier coefficients have the same magnitude) of degree d and sparsity 2(omega(d)) can 1/3-approximate a Boolean function. This conjecture is known to be true assuming FEI and we prove the conjecture unconditionally (i.e., without assuming the FEI conjecture) for a class of polynomials. We discuss an intriguing connection between our conjecture and the constant for the Bohnenblust-Hille inequality, which has been extensively studied in functional analysis.

  • Název v anglickém jazyce

    Improved Bounds on Fourier Entropy and Min-Entropy

  • Popis výsledku anglicky

    Given a Boolean function f : { -1, l}(n) -&gt; { -1, 1}, define the Fourier distribution to be the distribution on subsets of [n], where each S subset of [n] is sampled with probability (f) over cap (S)(2). The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [24] seeks to relate two fundamental measures associated with the Fourier distribution: does there exist a universal constant C &gt; 0 such that H((f) over cap (2)) &lt;= C . Inf(f), where H((f) over cap (2)) is the Shannon entropy of the Fourier distribution of f and Inf(f) is the total influence of f? In this paper we present three new contributions towards the FEI conjecture: (i) Our first contribution shows that H((f) over cap (2)) &lt;= 2 . aUC(circle plus) (f), where aUC(circle plus) (f) is the average unambiguous parity-certificate complexity of f . This improves upon several bounds shown by Chakraborty et al. [16]. We further improve this bound for unambiguous DNFs. (ii) We next consider the weaker Fourier Min-entropy-Influence (FMEI) conjecture posed by O&apos;Donnell and others [43, 40] which asks if H-infinity ((f) over cap (2)) &lt;= C . lnf(f), where H-infinity ((f) over cap (2)) is the min-entropy of the Fourier distribution. We show H-infinity ((f) over cap (2)) &lt;= 2 . C-min(circle plus)(f), where C-min(circle plus )(f) is the minimum parity certificate complexity of f. We also show that for all epsilon &gt;= 0, we have H-infinity ((f) over cap (2)) &lt;= 2log(parallel to(f) over cap parallel to(1,epsilon) 1(1 - epsilon)) , where parallel to(f) over cap parallel to(1,epsilon )is the approximate spectral norm of f. As a corollary, we verify the FMEI conjecture for the class of read-k DNFs (for constant k). (iii) Our third contribution is to better understand implications of the FEI conjecture for the structure of polynomials that 1/3-approximate a Boolean function on the Boolean cube. We pose a conjecture: no flat polynomial (whose non-zero Fourier coefficients have the same magnitude) of degree d and sparsity 2(omega(d)) can 1/3-approximate a Boolean function. This conjecture is known to be true assuming FEI and we prove the conjecture unconditionally (i.e., without assuming the FEI conjecture) for a class of polynomials. We discuss an intriguing connection between our conjecture and the constant for the Bohnenblust-Hille inequality, which has been extensively studied in functional analysis.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020)

  • ISBN

    978-3-95977-140-5

  • ISSN

    1868-8969

  • e-ISSN

  • Počet stran výsledku

    19

  • Strana od-do

  • Název nakladatele

    SCHLOSS DAGSTUHL, LEIBNIZ CENTER INFORMATICS

  • Místo vydání

    WADEM

  • Místo konání akce

    Montpellier

  • Datum konání akce

    10. 3. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000521377300045