Improved Bounds on Fourier Entropy and Min-entropy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438299" target="_blank" >RIV/00216208:11320/21:10438299 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VC5Rh0kxzB" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VC5Rh0kxzB</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3470860" target="_blank" >10.1145/3470860</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improved Bounds on Fourier Entropy and Min-entropy
Popis výsledku v původním jazyce
Given a Boolean function f : {-1.1}(n) {-1, 1), define the Fourier distribution to be the distribution on subsets of [n], where each S subset of [n] is sampled with probability (f) over cap (S)(2). The Fourier Entropy-influence (FEI) conjecture of Friedgut and Kalai [28] seeks to relate two fundamental measures associated with the Fourier distribution: does there exist a universal constant C > 0 such that H((f) over cap (2)) <= C . Inf(f ), where H((f) over cap (2)) is the Shannon entropy of the Fourier distribution of f and Inf(f) is the total influence of f? In this article, we present three new contributions toward the FEI conjecture: (1) Our first contribution shows that H((f) over cap (2)) <= 2 . aUC(circle plus)(f), where aUC(circle plus)(f) is the average unambiguous parity-certificate complexity off. This improves upon several bounds shown by Chakraborty et al. [20]. We further improve this bound for unambiguous DNFs. We also discuss how our work makes Mansour's conjecture for DNFs a natural next step toward resolution of the FEI conjecture. (2) We next consider the weaker Fourier Min-entropy-influence (FMEI) conjecture posed by O'Donnell and others [50, 53], which asks if H-infinity((f) over cap (2)) <= C . Inf(f ), where H-infinity((f) over cap (2)) is the min-entropy of the Fourier distribution. We show H-infinity((f) over cap (2)) <= 2 . C-min(circle plus) (f), where C-min(circle plus) (f ) is the minimum parity-certificate complexity of f. We also show that for all epsilon >= 0, we have H-infinity((f) over cap (2)) <= 2 log(parallel to(f) over cap parallel to(1,epsilon)/(1-epsilon)), where parallel to(f) over cap parallel to(1,epsilon) is the approximate spectral norm of f . As a corollary, we verify the FMEI conjecture for the class of read-k DN Fs (for constant k). (3) Our third contribution is to better understand implications of the FEI conjecture for the structure of polynomials that 1/3-approximate a Boolean function on the Boolean cube. We pose a conjecture: no flat polynomial (whose non-zero Fourier coefficients have the same magnitude) of degree d and sparsity 2(omega(d)) can 1/3-approximate a Boolean function. This conjecture is known to be true assuming FEI, and we prove the conjecture unconditionally (i.e., without assuming the FEI conjecture) for a class of polynomials. We discuss an intriguing connection between our conjecture and the constant for the Bohnenblust-Hille inequality, which has been extensively studied in functional analysis.
Název v anglickém jazyce
Improved Bounds on Fourier Entropy and Min-entropy
Popis výsledku anglicky
Given a Boolean function f : {-1.1}(n) {-1, 1), define the Fourier distribution to be the distribution on subsets of [n], where each S subset of [n] is sampled with probability (f) over cap (S)(2). The Fourier Entropy-influence (FEI) conjecture of Friedgut and Kalai [28] seeks to relate two fundamental measures associated with the Fourier distribution: does there exist a universal constant C > 0 such that H((f) over cap (2)) <= C . Inf(f ), where H((f) over cap (2)) is the Shannon entropy of the Fourier distribution of f and Inf(f) is the total influence of f? In this article, we present three new contributions toward the FEI conjecture: (1) Our first contribution shows that H((f) over cap (2)) <= 2 . aUC(circle plus)(f), where aUC(circle plus)(f) is the average unambiguous parity-certificate complexity off. This improves upon several bounds shown by Chakraborty et al. [20]. We further improve this bound for unambiguous DNFs. We also discuss how our work makes Mansour's conjecture for DNFs a natural next step toward resolution of the FEI conjecture. (2) We next consider the weaker Fourier Min-entropy-influence (FMEI) conjecture posed by O'Donnell and others [50, 53], which asks if H-infinity((f) over cap (2)) <= C . Inf(f ), where H-infinity((f) over cap (2)) is the min-entropy of the Fourier distribution. We show H-infinity((f) over cap (2)) <= 2 . C-min(circle plus) (f), where C-min(circle plus) (f ) is the minimum parity-certificate complexity of f. We also show that for all epsilon >= 0, we have H-infinity((f) over cap (2)) <= 2 log(parallel to(f) over cap parallel to(1,epsilon)/(1-epsilon)), where parallel to(f) over cap parallel to(1,epsilon) is the approximate spectral norm of f . As a corollary, we verify the FMEI conjecture for the class of read-k DN Fs (for constant k). (3) Our third contribution is to better understand implications of the FEI conjecture for the structure of polynomials that 1/3-approximate a Boolean function on the Boolean cube. We pose a conjecture: no flat polynomial (whose non-zero Fourier coefficients have the same magnitude) of degree d and sparsity 2(omega(d)) can 1/3-approximate a Boolean function. This conjecture is known to be true assuming FEI, and we prove the conjecture unconditionally (i.e., without assuming the FEI conjecture) for a class of polynomials. We discuss an intriguing connection between our conjecture and the constant for the Bohnenblust-Hille inequality, which has been extensively studied in functional analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Computation Theory
ISSN
1942-3454
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
40
Strana od-do
22
Kód UT WoS článku
000692902500002
EID výsledku v databázi Scopus
2-s2.0-85114356171