Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improved Bounds on Fourier Entropy and Min-entropy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438299" target="_blank" >RIV/00216208:11320/21:10438299 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VC5Rh0kxzB" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VC5Rh0kxzB</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3470860" target="_blank" >10.1145/3470860</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improved Bounds on Fourier Entropy and Min-entropy

  • Popis výsledku v původním jazyce

    Given a Boolean function f : {-1.1}(n) {-1, 1), define the Fourier distribution to be the distribution on subsets of [n], where each S subset of [n] is sampled with probability (f) over cap (S)(2). The Fourier Entropy-influence (FEI) conjecture of Friedgut and Kalai [28] seeks to relate two fundamental measures associated with the Fourier distribution: does there exist a universal constant C &gt; 0 such that H((f) over cap (2)) &lt;= C . Inf(f ), where H((f) over cap (2)) is the Shannon entropy of the Fourier distribution of f and Inf(f) is the total influence of f? In this article, we present three new contributions toward the FEI conjecture: (1) Our first contribution shows that H((f) over cap (2)) &lt;= 2 . aUC(circle plus)(f), where aUC(circle plus)(f) is the average unambiguous parity-certificate complexity off. This improves upon several bounds shown by Chakraborty et al. [20]. We further improve this bound for unambiguous DNFs. We also discuss how our work makes Mansour&apos;s conjecture for DNFs a natural next step toward resolution of the FEI conjecture. (2) We next consider the weaker Fourier Min-entropy-influence (FMEI) conjecture posed by O&apos;Donnell and others [50, 53], which asks if H-infinity((f) over cap (2)) &lt;= C . Inf(f ), where H-infinity((f) over cap (2)) is the min-entropy of the Fourier distribution. We show H-infinity((f) over cap (2)) &lt;= 2 . C-min(circle plus) (f), where C-min(circle plus) (f ) is the minimum parity-certificate complexity of f. We also show that for all epsilon &gt;= 0, we have H-infinity((f) over cap (2)) &lt;= 2 log(parallel to(f) over cap parallel to(1,epsilon)/(1-epsilon)), where parallel to(f) over cap parallel to(1,epsilon) is the approximate spectral norm of f . As a corollary, we verify the FMEI conjecture for the class of read-k DN Fs (for constant k). (3) Our third contribution is to better understand implications of the FEI conjecture for the structure of polynomials that 1/3-approximate a Boolean function on the Boolean cube. We pose a conjecture: no flat polynomial (whose non-zero Fourier coefficients have the same magnitude) of degree d and sparsity 2(omega(d)) can 1/3-approximate a Boolean function. This conjecture is known to be true assuming FEI, and we prove the conjecture unconditionally (i.e., without assuming the FEI conjecture) for a class of polynomials. We discuss an intriguing connection between our conjecture and the constant for the Bohnenblust-Hille inequality, which has been extensively studied in functional analysis.

  • Název v anglickém jazyce

    Improved Bounds on Fourier Entropy and Min-entropy

  • Popis výsledku anglicky

    Given a Boolean function f : {-1.1}(n) {-1, 1), define the Fourier distribution to be the distribution on subsets of [n], where each S subset of [n] is sampled with probability (f) over cap (S)(2). The Fourier Entropy-influence (FEI) conjecture of Friedgut and Kalai [28] seeks to relate two fundamental measures associated with the Fourier distribution: does there exist a universal constant C &gt; 0 such that H((f) over cap (2)) &lt;= C . Inf(f ), where H((f) over cap (2)) is the Shannon entropy of the Fourier distribution of f and Inf(f) is the total influence of f? In this article, we present three new contributions toward the FEI conjecture: (1) Our first contribution shows that H((f) over cap (2)) &lt;= 2 . aUC(circle plus)(f), where aUC(circle plus)(f) is the average unambiguous parity-certificate complexity off. This improves upon several bounds shown by Chakraborty et al. [20]. We further improve this bound for unambiguous DNFs. We also discuss how our work makes Mansour&apos;s conjecture for DNFs a natural next step toward resolution of the FEI conjecture. (2) We next consider the weaker Fourier Min-entropy-influence (FMEI) conjecture posed by O&apos;Donnell and others [50, 53], which asks if H-infinity((f) over cap (2)) &lt;= C . Inf(f ), where H-infinity((f) over cap (2)) is the min-entropy of the Fourier distribution. We show H-infinity((f) over cap (2)) &lt;= 2 . C-min(circle plus) (f), where C-min(circle plus) (f ) is the minimum parity-certificate complexity of f. We also show that for all epsilon &gt;= 0, we have H-infinity((f) over cap (2)) &lt;= 2 log(parallel to(f) over cap parallel to(1,epsilon)/(1-epsilon)), where parallel to(f) over cap parallel to(1,epsilon) is the approximate spectral norm of f . As a corollary, we verify the FMEI conjecture for the class of read-k DN Fs (for constant k). (3) Our third contribution is to better understand implications of the FEI conjecture for the structure of polynomials that 1/3-approximate a Boolean function on the Boolean cube. We pose a conjecture: no flat polynomial (whose non-zero Fourier coefficients have the same magnitude) of degree d and sparsity 2(omega(d)) can 1/3-approximate a Boolean function. This conjecture is known to be true assuming FEI, and we prove the conjecture unconditionally (i.e., without assuming the FEI conjecture) for a class of polynomials. We discuss an intriguing connection between our conjecture and the constant for the Bohnenblust-Hille inequality, which has been extensively studied in functional analysis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACM Transactions on Computation Theory

  • ISSN

    1942-3454

  • e-ISSN

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    40

  • Strana od-do

    22

  • Kód UT WoS článku

    000692902500002

  • EID výsledku v databázi Scopus

    2-s2.0-85114356171