Antisocial online behavior detection using deep learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423220" target="_blank" >RIV/00216208:11320/20:10423220 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EdNDrUp~ng" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EdNDrUp~ng</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dss.2020.113362" target="_blank" >10.1016/j.dss.2020.113362</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Antisocial online behavior detection using deep learning
Popis výsledku v původním jazyce
Digitalization shifts human communication to online platforms, which has many benefits but also builds up a space for antisocial online behavior (AOB) such as harassment, insult and other forms of hateful textual content. Online platforms have good reasons to monitor and moderate such content. The paper examines the viability of automatic content monitoring using deep machine learning and natural language processing (NLP). More specifically, we consolidate prior work in the field of antisocial online behavior detection and compare relevant approaches to recent NLP models in an empirical study. Covering important methodological advancements in NLP including bidirectional encoding, attention, hierarchical text representations, and pre-trained transformer-based language models, and extending previous approaches by introducing a pseudo-sentence hierarchical attention network, the paper provides a comprehensive summary of the state-of-affairs in NLP-based AOB detection, clarifies the detection accuracy that is attainable with today's technology, discusses whether this degree is sufficient for deploying deep learning-based text screening systems, and approaches the interpretability topic.
Název v anglickém jazyce
Antisocial online behavior detection using deep learning
Popis výsledku anglicky
Digitalization shifts human communication to online platforms, which has many benefits but also builds up a space for antisocial online behavior (AOB) such as harassment, insult and other forms of hateful textual content. Online platforms have good reasons to monitor and moderate such content. The paper examines the viability of automatic content monitoring using deep machine learning and natural language processing (NLP). More specifically, we consolidate prior work in the field of antisocial online behavior detection and compare relevant approaches to recent NLP models in an empirical study. Covering important methodological advancements in NLP including bidirectional encoding, attention, hierarchical text representations, and pre-trained transformer-based language models, and extending previous approaches by introducing a pseudo-sentence hierarchical attention network, the paper provides a comprehensive summary of the state-of-affairs in NLP-based AOB detection, clarifies the detection accuracy that is attainable with today's technology, discusses whether this degree is sufficient for deploying deep learning-based text screening systems, and approaches the interpretability topic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28231X" target="_blank" >GX19-28231X: Dynamické modely pro digitální finance</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Decision Support Systems
ISSN
0167-9236
e-ISSN
—
Svazek periodika
138
Číslo periodika v rámci svazku
November 2020
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
113362
Kód UT WoS článku
000576663200004
EID výsledku v databázi Scopus
2-s2.0-85089579327