Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multiclass Event Classification from Text

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439967" target="_blank" >RIV/00216208:11320/21:10439967 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3a6qL8FBp1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3a6qL8FBp1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1155/2021/6660651" target="_blank" >10.1155/2021/6660651</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multiclass Event Classification from Text

  • Popis výsledku v původním jazyce

    Social media has become one of the most popular sources of information. People communicate with each other and share their ideas, commenting on global issues and events in a multilingual environment. While social media has been popular for several years, recently, it has given an exponential rise in online data volumes because of the increasing popularity of local languages on the web. This allows researchers of the NLP community to exploit the richness of different languages while overcoming the challenges posed by these languages. Urdu is also one of the most used local languages being used on social media. In this paper, we presented the first-ever event detection approach for Urdu language text. Multiclass event classification is performed by popular deep learning (DL) models, i.e.,Convolution Neural Network (CNN), Recurrence Neural Network (RNN), and Deep Neural Network (DNN). The one-hot-encoding, word embedding, and term-frequency inverse document frequency- (TF-IDF-) based feature vectors are used to evaluate the Deep Learning(DL) models. The dataset that is used for experimental work consists of more than 0.15 million (103965) labeled sentences. DNN classifier has achieved a promising accuracy of 84% in extracting and classifying the events in the Urdu language script.

  • Název v anglickém jazyce

    Multiclass Event Classification from Text

  • Popis výsledku anglicky

    Social media has become one of the most popular sources of information. People communicate with each other and share their ideas, commenting on global issues and events in a multilingual environment. While social media has been popular for several years, recently, it has given an exponential rise in online data volumes because of the increasing popularity of local languages on the web. This allows researchers of the NLP community to exploit the richness of different languages while overcoming the challenges posed by these languages. Urdu is also one of the most used local languages being used on social media. In this paper, we presented the first-ever event detection approach for Urdu language text. Multiclass event classification is performed by popular deep learning (DL) models, i.e.,Convolution Neural Network (CNN), Recurrence Neural Network (RNN), and Deep Neural Network (DNN). The one-hot-encoding, word embedding, and term-frequency inverse document frequency- (TF-IDF-) based feature vectors are used to evaluate the Deep Learning(DL) models. The dataset that is used for experimental work consists of more than 0.15 million (103965) labeled sentences. DNN classifier has achieved a promising accuracy of 84% in extracting and classifying the events in the Urdu language script.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Programming

  • ISSN

    1058-9244

  • e-ISSN

  • Svazek periodika

    Neuveden

  • Číslo periodika v rámci svazku

    13.01.2021

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    30

  • Strana od-do

    6660651

  • Kód UT WoS článku

    000613105800002

  • EID výsledku v databázi Scopus

    2-s2.0-85099884066