Comparing Turbulent Cascades and Heating versus Spectral Anisotropy in Solar Wind via Direct Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423248" target="_blank" >RIV/00216208:11320/20:10423248 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6FeuZbqIxm" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6FeuZbqIxm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/1538-4357/abb19e" target="_blank" >10.3847/1538-4357/abb19e</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing Turbulent Cascades and Heating versus Spectral Anisotropy in Solar Wind via Direct Simulations
Popis výsledku v původním jazyce
In a previous work (MGV18), we showed numerically that the turbulent cascade generated by quasi-2D structures (with wavevectors mostly perpendicular to the mean magnetic field) is able to generate a temperature profile close to the one observed in solar wind (1/R) in the range 0.2 <= R <= 1 au. Theory, observations, and numerical simulations point to another robust structure, the radial slab, with dominant wavevectors along the radial: we study here the efficiency of the radial-slab cascade in building the 1/Rtemperature profile. As in MGV18, we solve the three-dimensional magnetohydrodynamic equations including expansion to simulate the turbulent evolution. We find that an isotropic distribution of wavevectors with large cross-helicity at 0.2 au, along with a large wind expansion rate, lead again to a temperature decay rate close to 1/Rbut with a radial-slab anisotropy at 1 au. Surprisingly, the turbulent cascade concentrates in the plane transverse to the radial direction, displaying 1D spectra with scalings close tok(-5/3)in this plane. This supports both the idea of turbulent heating of the solar wind, and the existence of two different turbulent cascades, associated to quasi-2D and radial-slab geometries. We conclude that sampling the radial spectrum in the solar wind may give poor information on the real cascade regime and rate when the radial slab is a non-negligible part of turbulence.
Název v anglickém jazyce
Comparing Turbulent Cascades and Heating versus Spectral Anisotropy in Solar Wind via Direct Simulations
Popis výsledku anglicky
In a previous work (MGV18), we showed numerically that the turbulent cascade generated by quasi-2D structures (with wavevectors mostly perpendicular to the mean magnetic field) is able to generate a temperature profile close to the one observed in solar wind (1/R) in the range 0.2 <= R <= 1 au. Theory, observations, and numerical simulations point to another robust structure, the radial slab, with dominant wavevectors along the radial: we study here the efficiency of the radial-slab cascade in building the 1/Rtemperature profile. As in MGV18, we solve the three-dimensional magnetohydrodynamic equations including expansion to simulate the turbulent evolution. We find that an isotropic distribution of wavevectors with large cross-helicity at 0.2 au, along with a large wind expansion rate, lead again to a temperature decay rate close to 1/Rbut with a radial-slab anisotropy at 1 au. Surprisingly, the turbulent cascade concentrates in the plane transverse to the radial direction, displaying 1D spectra with scalings close tok(-5/3)in this plane. This supports both the idea of turbulent heating of the solar wind, and the existence of two different turbulent cascades, associated to quasi-2D and radial-slab geometries. We conclude that sampling the radial spectrum in the solar wind may give poor information on the real cascade regime and rate when the radial slab is a non-negligible part of turbulence.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astrophysical Journal
ISSN
0004-637X
e-ISSN
—
Svazek periodika
902
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
34
Kód UT WoS článku
000576346900001
EID výsledku v databázi Scopus
2-s2.0-85092649094