Nanoscale architecture of ceria-based model catalysts: Pt-Co nanostructures on well-ordered CeO2(111) thin films
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423306" target="_blank" >RIV/00216208:11320/20:10423306 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=l9b9ConB08" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=l9b9ConB08</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/S1872-2067(19)63462-5" target="_blank" >10.1016/S1872-2067(19)63462-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanoscale architecture of ceria-based model catalysts: Pt-Co nanostructures on well-ordered CeO2(111) thin films
Popis výsledku v původním jazyce
We have prepared and characterized atomically well-defined model systems for ceria-supported Pt-Co core-shell catalysts. Pt@Co and Co@Pt core-shell nanostructures were grown on well-ordered CeO2(111) films on Cu(111) by physical vapour deposition of Pt and Co metals in ultrahigh vacuum and investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The deposition of Co onto CeO2(111) yields Co-CeO2(111) solid solution at low Co coverage (0.5 ML), followed by the growth of metallic Co nanoparticles at higher Co coverages. Both Pt@Co and Co@Pt model structures are stable against sintering in the temperature range between 300 and 500 K. After annealing at 500 K, the Pt@Co nanostructure contains nearly pure Co-shell while the Pt-shell in the Co@Pt is partially covered by metallic Co. Above 550 K, the re-ordering in the near surface regions yields a subsurface Pt-Co alloy and Pt-rich shells in both Pt@Co and Co@Pt nanostructures. In the case of Co@Pt nanoparticles, the chemical ordering in the near surface region depends on the initial thickness of the deposited Pt-shell. Annealing of the Co@Pt nanostructures in the presence of O-2 triggers the decomposition of Pt-Co alloy along with the oxidation of Co, regardless of the thickness of the initial Pt-shell. Progressive oxidation of Co coupled with adsorbate-induced Co segregation leads to the formation of thick CoO layers on the surfaces of the supported Co@Pt nanostructures. This process is accompanied by the disintegration of the CeO2(111) film and encapsulation of oxidized Co@Pt nanostructures by CeO2 upon annealing in O-2 above 550 K. Notably, during oxidation and reduction cycles with O-2 and H-2 at different temperatures, the changes in the structure and chemical composition of supported Co@Pt nanostructures were driven mainly by oxidation while reduction treatments had little effect regardless of the initial thickness of the Pt-shell. (C) 2020, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Nanoscale architecture of ceria-based model catalysts: Pt-Co nanostructures on well-ordered CeO2(111) thin films
Popis výsledku anglicky
We have prepared and characterized atomically well-defined model systems for ceria-supported Pt-Co core-shell catalysts. Pt@Co and Co@Pt core-shell nanostructures were grown on well-ordered CeO2(111) films on Cu(111) by physical vapour deposition of Pt and Co metals in ultrahigh vacuum and investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The deposition of Co onto CeO2(111) yields Co-CeO2(111) solid solution at low Co coverage (0.5 ML), followed by the growth of metallic Co nanoparticles at higher Co coverages. Both Pt@Co and Co@Pt model structures are stable against sintering in the temperature range between 300 and 500 K. After annealing at 500 K, the Pt@Co nanostructure contains nearly pure Co-shell while the Pt-shell in the Co@Pt is partially covered by metallic Co. Above 550 K, the re-ordering in the near surface regions yields a subsurface Pt-Co alloy and Pt-rich shells in both Pt@Co and Co@Pt nanostructures. In the case of Co@Pt nanoparticles, the chemical ordering in the near surface region depends on the initial thickness of the deposited Pt-shell. Annealing of the Co@Pt nanostructures in the presence of O-2 triggers the decomposition of Pt-Co alloy along with the oxidation of Co, regardless of the thickness of the initial Pt-shell. Progressive oxidation of Co coupled with adsorbate-induced Co segregation leads to the formation of thick CoO layers on the surfaces of the supported Co@Pt nanostructures. This process is accompanied by the disintegration of the CeO2(111) film and encapsulation of oxidized Co@Pt nanostructures by CeO2 upon annealing in O-2 above 550 K. Notably, during oxidation and reduction cycles with O-2 and H-2 at different temperatures, the changes in the structure and chemical composition of supported Co@Pt nanostructures were driven mainly by oxidation while reduction treatments had little effect regardless of the initial thickness of the Pt-shell. (C) 2020, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chinese Journal of Catalysis
ISSN
0253-9837
e-ISSN
—
Svazek periodika
41
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
13
Strana od-do
985-997
Kód UT WoS článku
000531430200010
EID výsledku v databázi Scopus
2-s2.0-85078673057