Conformal symmetry breaking differential operators on differential forms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423772" target="_blank" >RIV/00216208:11320/20:10423772 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nUrspV0NdV" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nUrspV0NdV</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/memo/1304" target="_blank" >10.1090/memo/1304</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Conformal symmetry breaking differential operators on differential forms
Popis výsledku v původním jazyce
We study conformal symmetry breaking differential operators which map differential forms on Rn to differential forms on a codimension one subspace Rn-1. These operators are equivariant with respect to the conformal Lie algebra of the subspace Rn-1. They correspond to homomorphisms of generalized Verma modules for so(n, 1) into generalized Verma modules for so(n+1, 1) both being induced from fundamental form representations of a parabolic subalgebra. We apply the F-method to derive explicit formulas for such homomorphisms. In particular, we find explicit formulas for the generators of the intertwining operators of the related branching problems restricting generalized Verma modules for so(n+1, 1) to so(n, 1). As consequences, we derive closed formulas for all conformal symmetry breaking differential operators in terms of the first-order operators d, δ, - d and -δ and certain hypergeometric polynomials. A dominant role in these studies is played by two infinite sequences of symmetry breaking differential operators which depend on a complex parameter λ. Their values at special values of λ appear as factors in two systems of factorization identities which involve the Branson-Gover operators of the Euclidean metrics on Rn and Rn-1 and the operators d, δ, - d and -δ as factors, respectively. Moreover, they naturally recover the gauge companion and Q-curvature operators of the Euclidean metric on the subspace Rn-1, respectively.
Název v anglickém jazyce
Conformal symmetry breaking differential operators on differential forms
Popis výsledku anglicky
We study conformal symmetry breaking differential operators which map differential forms on Rn to differential forms on a codimension one subspace Rn-1. These operators are equivariant with respect to the conformal Lie algebra of the subspace Rn-1. They correspond to homomorphisms of generalized Verma modules for so(n, 1) into generalized Verma modules for so(n+1, 1) both being induced from fundamental form representations of a parabolic subalgebra. We apply the F-method to derive explicit formulas for such homomorphisms. In particular, we find explicit formulas for the generators of the intertwining operators of the related branching problems restricting generalized Verma modules for so(n+1, 1) to so(n, 1). As consequences, we derive closed formulas for all conformal symmetry breaking differential operators in terms of the first-order operators d, δ, - d and -δ and certain hypergeometric polynomials. A dominant role in these studies is played by two infinite sequences of symmetry breaking differential operators which depend on a complex parameter λ. Their values at special values of λ appear as factors in two systems of factorization identities which involve the Branson-Gover operators of the Euclidean metrics on Rn and Rn-1 and the operators d, δ, - d and -δ as factors, respectively. Moreover, they naturally recover the gauge companion and Q-curvature operators of the Euclidean metric on the subspace Rn-1, respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Memoirs of the American Mathematical Society
ISSN
0065-9266
e-ISSN
—
Svazek periodika
2020
Číslo periodika v rámci svazku
1304
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
122
Strana od-do
1-122
Kód UT WoS článku
000621025000001
EID výsledku v databázi Scopus
2-s2.0-85101432574