THE COHEN-MACAULAY PROPERTY IN DERIVED COMMUTATIVE ALGEBRA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423963" target="_blank" >RIV/00216208:11320/20:10423963 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OqZRDtRuo-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OqZRDtRuo-</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/tran/8099" target="_blank" >10.1090/tran/8099</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
THE COHEN-MACAULAY PROPERTY IN DERIVED COMMUTATIVE ALGEBRA
Popis výsledku v původním jazyce
By extending some basic results of Grothendieck and Foxby about local cohomology to commutative DG-rings, we prove new amplitude inequalities about finite DG-modules of finite injective dimension over commutative local DG-rings, complementing results of Jorgensen and resolving a recent conjecture of Minamoto. When these inequalities are equalities, we arrive at the notion of a local-Cohen-Macaulay DG-ring. We make a detailed study of this notion, showing that much of the classical theory of Cohen-Macaulay rings and modules can be generalized to the derived setting, and that there are many natural examples of local-Cohen-Macaulay DG-rings. In particular, local Gorenstein DG-rings are local-Cohen-Macaulay. Our work is in a non-positive cohomological situation, allowing the Cohen-Macaulay condition to be introduced to derived algebraic geometry, but we also discuss extensions of it to non-negative DG-rings, which could lead to the concept of Cohen-Macaulayness in topology.
Název v anglickém jazyce
THE COHEN-MACAULAY PROPERTY IN DERIVED COMMUTATIVE ALGEBRA
Popis výsledku anglicky
By extending some basic results of Grothendieck and Foxby about local cohomology to commutative DG-rings, we prove new amplitude inequalities about finite DG-modules of finite injective dimension over commutative local DG-rings, complementing results of Jorgensen and resolving a recent conjecture of Minamoto. When these inequalities are equalities, we arrive at the notion of a local-Cohen-Macaulay DG-ring. We make a detailed study of this notion, showing that much of the classical theory of Cohen-Macaulay rings and modules can be generalized to the derived setting, and that there are many natural examples of local-Cohen-Macaulay DG-rings. In particular, local Gorenstein DG-rings are local-Cohen-Macaulay. Our work is in a non-positive cohomological situation, allowing the Cohen-Macaulay condition to be introduced to derived algebraic geometry, but we also discuss extensions of it to non-negative DG-rings, which could lead to the concept of Cohen-Macaulayness in topology.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transactions of the American Mathematical Society
ISSN
0002-9947
e-ISSN
—
Svazek periodika
2020
Číslo periodika v rámci svazku
373
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
44
Strana od-do
6095-6138
Kód UT WoS článku
000574902200002
EID výsledku v databázi Scopus
2-s2.0-85092314353