Hidden in the Layers: Interpretation of Neural Networks for Natural Language Processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424385" target="_blank" >RIV/00216208:11320/20:10424385 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hidden in the Layers: Interpretation of Neural Networks for Natural Language Processing
Popis výsledku v původním jazyce
In this book, we explore neural-network architectures and models that are used for Natural Language Processing (NLP). We analyze their internal representations (word-embeddings, hidden states, attention mechanism, and contextual embeddings) and review what properties these representations have and what kinds of linguistically interpretable features emerge in them. We use our own experimental results, as well as the results published by other research teams to present an overview of models and representations and their linguistic properties. In the beginning, we explain the basic concepts of deep learning and its usage in NLP and discuss details of the most prominent neural architectures and models. Then, we outline the concept of interpretability, different views on it, and introduce basic supervised and unsupervised methods that are used for interpreting trained neural-network models. The next part is devoted to static word embeddings. We show various methods for embeddings space visualization, compo
Název v anglickém jazyce
Hidden in the Layers: Interpretation of Neural Networks for Natural Language Processing
Popis výsledku anglicky
In this book, we explore neural-network architectures and models that are used for Natural Language Processing (NLP). We analyze their internal representations (word-embeddings, hidden states, attention mechanism, and contextual embeddings) and review what properties these representations have and what kinds of linguistically interpretable features emerge in them. We use our own experimental results, as well as the results published by other research teams to present an overview of models and representations and their linguistic properties. In the beginning, we explain the basic concepts of deep learning and its usage in NLP and discuss details of the most prominent neural architectures and models. Then, we outline the concept of interpretability, different views on it, and introduce basic supervised and unsupervised methods that are used for interpreting trained neural-network models. The next part is devoted to static word embeddings. We show various methods for embeddings space visualization, compo
Klasifikace
Druh
B - Odborná kniha
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-02196S" target="_blank" >GA18-02196S: Reprezentace lingvistické struktury v neuronových sítích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
978-80-88132-10-3
Počet stran knihy
175
Název nakladatele
Institute of Formal and Applied Linguistics
Místo vydání
Prague, Czechia
Kód UT WoS knihy
—