Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep Learning and Its Applications to Natural Language Processing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427049" target="_blank" >RIV/00216208:11320/19:10427049 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-030-06073-2_4" target="_blank" >https://doi.org/10.1007/978-3-030-06073-2_4</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep Learning and Its Applications to Natural Language Processing

  • Popis výsledku v původním jazyce

    Natural language processing (NLP), utilizing computer programs to process large amounts of language data, is a key research area in artificial intelligence and computer science. Deep learning technologies have been well developed and applied in this area. However, the literature still lacks a succinct survey, which would allow readers to get a quick understanding of (1) how the deep learning technologies apply to NLP and (2) what the promising applications are. In this survey, we try to investigate the recent developments of NLP, centered around natural language understanding, to answer these two questions. First, we explore the newly developed word embedding or word representation methods. Then, we describe two powerful learning models, Recurrent Neural Networks and Convolutional Neural Networks. Next, we outline five key NLP applications, including (1) part-of-speech tagging and named entity recognition, two fundamental NLP applications; (2) machine translation and automatic English grammatical error correction, two applications with prominent commercial value; and (3) image description, an application requiring technologies of both computer vision and NLP. Moreover, we present a series of benchmark datasets which would be useful for researchers to evaluate the performance of models in the related applications.

  • Název v anglickém jazyce

    Deep Learning and Its Applications to Natural Language Processing

  • Popis výsledku anglicky

    Natural language processing (NLP), utilizing computer programs to process large amounts of language data, is a key research area in artificial intelligence and computer science. Deep learning technologies have been well developed and applied in this area. However, the literature still lacks a succinct survey, which would allow readers to get a quick understanding of (1) how the deep learning technologies apply to NLP and (2) what the promising applications are. In this survey, we try to investigate the recent developments of NLP, centered around natural language understanding, to answer these two questions. First, we explore the newly developed word embedding or word representation methods. Then, we describe two powerful learning models, Recurrent Neural Networks and Convolutional Neural Networks. Next, we outline five key NLP applications, including (1) part-of-speech tagging and named entity recognition, two fundamental NLP applications; (2) machine translation and automatic English grammatical error correction, two applications with prominent commercial value; and (3) image description, an application requiring technologies of both computer vision and NLP. Moreover, we present a series of benchmark datasets which would be useful for researchers to evaluate the performance of models in the related applications.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů