Large Corpus of Czech Parliament Plenary Hearings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424461" target="_blank" >RIV/00216208:11320/20:10424461 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/2020.lrec-1.781/" target="_blank" >https://www.aclweb.org/anthology/2020.lrec-1.781/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Large Corpus of Czech Parliament Plenary Hearings
Popis výsledku v původním jazyce
We present a large corpus of Czech parliament plenary sessions. The corpus consists of approximately 1200 hours of speech data and corresponding text transcriptions. The whole corpus has been segmented to short audio segments making it suitable for both training and evaluation of automatic speech recognition (ASR) systems. The source language of the corpus is Czech, which makes it a valuable resource for future research as only a few public datasets are available in the Czech language. We complement the data release with experiments of two baseline ASR systems trained on the presented data: the more traditional approach implemented in the Kaldi ASRtoolkit which combines hidden Markov models and deep neural networks (NN) and a modern ASR architecture implemented in Jaspertoolkit which uses deep NNs in an end-to-end fashion.
Název v anglickém jazyce
Large Corpus of Czech Parliament Plenary Hearings
Popis výsledku anglicky
We present a large corpus of Czech parliament plenary sessions. The corpus consists of approximately 1200 hours of speech data and corresponding text transcriptions. The whole corpus has been segmented to short audio segments making it suitable for both training and evaluation of automatic speech recognition (ASR) systems. The source language of the corpus is Czech, which makes it a valuable resource for future research as only a few public datasets are available in the Czech language. We complement the data release with experiments of two baseline ASR systems trained on the presented data: the more traditional approach implemented in the Kaldi ASRtoolkit which combines hidden Markov models and deep neural networks (NN) and a modern ASR architecture implemented in Jaspertoolkit which uses deep NNs in an end-to-end fashion.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 12th International Conference on Language Resources and Evaluation (LREC 2020)
ISBN
979-10-95546-34-4
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
6363-6367
Název nakladatele
European Language Resources Association
Místo vydání
Marseille, France
Místo konání akce
Marseille, France
Datum konání akce
11. 5. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—