Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Large Corpus of Czech Parliament Plenary Hearings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424461" target="_blank" >RIV/00216208:11320/20:10424461 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.aclweb.org/anthology/2020.lrec-1.781/" target="_blank" >https://www.aclweb.org/anthology/2020.lrec-1.781/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Large Corpus of Czech Parliament Plenary Hearings

  • Popis výsledku v původním jazyce

    We present a large corpus of Czech parliament plenary sessions. The corpus consists of approximately 1200 hours of speech data and corresponding text transcriptions. The whole corpus has been segmented to short audio segments making it suitable for both training and evaluation of automatic speech recognition (ASR) systems. The source language of the corpus is Czech, which makes it a valuable resource for future research as only a few public datasets are available in the Czech language. We complement the data release with experiments of two baseline ASR systems trained on the presented data: the more traditional approach implemented in the Kaldi ASRtoolkit which combines hidden Markov models and deep neural networks (NN) and a modern ASR architecture implemented in Jaspertoolkit which uses deep NNs in an end-to-end fashion.

  • Název v anglickém jazyce

    Large Corpus of Czech Parliament Plenary Hearings

  • Popis výsledku anglicky

    We present a large corpus of Czech parliament plenary sessions. The corpus consists of approximately 1200 hours of speech data and corresponding text transcriptions. The whole corpus has been segmented to short audio segments making it suitable for both training and evaluation of automatic speech recognition (ASR) systems. The source language of the corpus is Czech, which makes it a valuable resource for future research as only a few public datasets are available in the Czech language. We complement the data release with experiments of two baseline ASR systems trained on the presented data: the more traditional approach implemented in the Kaldi ASRtoolkit which combines hidden Markov models and deep neural networks (NN) and a modern ASR architecture implemented in Jaspertoolkit which uses deep NNs in an end-to-end fashion.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 12th International Conference on Language Resources and Evaluation (LREC 2020)

  • ISBN

    979-10-95546-34-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    6363-6367

  • Název nakladatele

    European Language Resources Association

  • Místo vydání

    Marseille, France

  • Místo konání akce

    Marseille, France

  • Datum konání akce

    11. 5. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku