Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Jointly Trained Transformers Models for Spoken Language Translation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142914" target="_blank" >RIV/00216305:26230/21:PU142914 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.fit.vut.cz/research/publication/12522/" target="_blank" >https://www.fit.vut.cz/research/publication/12522/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP39728.2021.9414159" target="_blank" >10.1109/ICASSP39728.2021.9414159</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Jointly Trained Transformers Models for Spoken Language Translation

  • Popis výsledku v původním jazyce

    End-to-End and cascade (ASR-MT) spoken language translation (SLT) systems are reaching comparable performances, however, a large degradation is observed when translating the ASR hypothesis in comparison to using oracle input text. In this work, degradation in performance is reduced by creating an End-to-End differentiable pipeline between the ASR and MT systems. In this work, we train SLT systems with ASR objective as an auxiliary loss and both the networks are connected through the neural hidden representations. This training has an End-to-End differentiable path with respect to the final objective function and utilizes the ASR objective for better optimization. This architecture has improved the BLEU score from 41.21 to 44.69. Ensembling the proposed architecture with independently trained ASR and MT systems further improved the BLEU score from 44.69 to 46.9. All the experiments are reported on English-Portuguese speech translation task using the How2 corpus. The final BLEU score is on-par with the best speech translation system on How2 dataset without using any additional training data and language model and using fewer parameters.

  • Název v anglickém jazyce

    Jointly Trained Transformers Models for Spoken Language Translation

  • Popis výsledku anglicky

    End-to-End and cascade (ASR-MT) spoken language translation (SLT) systems are reaching comparable performances, however, a large degradation is observed when translating the ASR hypothesis in comparison to using oracle input text. In this work, degradation in performance is reduced by creating an End-to-End differentiable pipeline between the ASR and MT systems. In this work, we train SLT systems with ASR objective as an auxiliary loss and both the networks are connected through the neural hidden representations. This training has an End-to-End differentiable path with respect to the final objective function and utilizes the ASR objective for better optimization. This architecture has improved the BLEU score from 41.21 to 44.69. Ensembling the proposed architecture with independently trained ASR and MT systems further improved the BLEU score from 44.69 to 46.9. All the experiments are reported on English-Portuguese speech translation task using the How2 corpus. The final BLEU score is on-par with the best speech translation system on How2 dataset without using any additional training data and language model and using fewer parameters.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

  • ISBN

    978-1-7281-7605-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    7513-7517

  • Název nakladatele

    IEEE Signal Processing Society

  • Místo vydání

    Toronto, Ontario

  • Místo konání akce

    Toronto, Canada

  • Datum konání akce

    6. 6. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000704288407158