Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

BUT Systems for IWSLT 2023 Marathi - Hindi Low Resource Speech Translation Task

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149425" target="_blank" >RIV/00216305:26230/23:PU149425 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2023.iwslt-1.19.pdf" target="_blank" >https://aclanthology.org/2023.iwslt-1.19.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2023.iwslt-1.19" target="_blank" >10.18653/v1/2023.iwslt-1.19</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    BUT Systems for IWSLT 2023 Marathi - Hindi Low Resource Speech Translation Task

  • Popis výsledku v původním jazyce

    This paper describes the systems submitted for Marathi to Hindi low-resource speech translation task. Our primary submission is based on an end-to-end direct speech translation system, whereas the contrastive one is a cascaded system. The backbone of both the systems is a Hindi-Marathi bilingual ASR system trained on 2790 hours of imperfect transcribed speech. The end-to-end speech translation system was directly initialized from the ASR, and then finetuned for direct speech translation with an auxiliary CTC loss for translation. The MT model for the cascaded system is initialized from a cross-lingual language model, which was then fine-tuned using 1.6 M parallel sentences. All our systems were trained from scratch on publicly available datasets. In the end, we use a language model to re-score the n-best hypotheses. Our primary submission achieved 30.5 and 39.6 BLEU whereas the contrastive system obtained 21.7 and 28.6 BLEU on official dev and test sets respectively. The paper also presents the analysis on several experiments that were conducted and outlines the strategies for improving speech translation in low-resource scenarios.

  • Název v anglickém jazyce

    BUT Systems for IWSLT 2023 Marathi - Hindi Low Resource Speech Translation Task

  • Popis výsledku anglicky

    This paper describes the systems submitted for Marathi to Hindi low-resource speech translation task. Our primary submission is based on an end-to-end direct speech translation system, whereas the contrastive one is a cascaded system. The backbone of both the systems is a Hindi-Marathi bilingual ASR system trained on 2790 hours of imperfect transcribed speech. The end-to-end speech translation system was directly initialized from the ASR, and then finetuned for direct speech translation with an auxiliary CTC loss for translation. The MT model for the cascaded system is initialized from a cross-lingual language model, which was then fine-tuned using 1.6 M parallel sentences. All our systems were trained from scratch on publicly available datasets. In the end, we use a language model to re-score the n-best hypotheses. Our primary submission achieved 30.5 and 39.6 BLEU whereas the contrastive system obtained 21.7 and 28.6 BLEU on official dev and test sets respectively. The paper also presents the analysis on several experiments that were conducted and outlines the strategies for improving speech translation in low-resource scenarios.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    20th International Conference on Spoken Language Translation, IWSLT 2023 - Proceedings of the Conference

  • ISBN

    978-1-959429-84-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    227-234

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Toronto (in-person and online)

  • Místo konání akce

    Toronto

  • Datum konání akce

    9. 7. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku