BUT Systems for IWSLT 2023 Marathi - Hindi Low Resource Speech Translation Task
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F23%3APU149425" target="_blank" >RIV/00216305:26230/23:PU149425 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2023.iwslt-1.19.pdf" target="_blank" >https://aclanthology.org/2023.iwslt-1.19.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2023.iwslt-1.19" target="_blank" >10.18653/v1/2023.iwslt-1.19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
BUT Systems for IWSLT 2023 Marathi - Hindi Low Resource Speech Translation Task
Popis výsledku v původním jazyce
This paper describes the systems submitted for Marathi to Hindi low-resource speech translation task. Our primary submission is based on an end-to-end direct speech translation system, whereas the contrastive one is a cascaded system. The backbone of both the systems is a Hindi-Marathi bilingual ASR system trained on 2790 hours of imperfect transcribed speech. The end-to-end speech translation system was directly initialized from the ASR, and then finetuned for direct speech translation with an auxiliary CTC loss for translation. The MT model for the cascaded system is initialized from a cross-lingual language model, which was then fine-tuned using 1.6 M parallel sentences. All our systems were trained from scratch on publicly available datasets. In the end, we use a language model to re-score the n-best hypotheses. Our primary submission achieved 30.5 and 39.6 BLEU whereas the contrastive system obtained 21.7 and 28.6 BLEU on official dev and test sets respectively. The paper also presents the analysis on several experiments that were conducted and outlines the strategies for improving speech translation in low-resource scenarios.
Název v anglickém jazyce
BUT Systems for IWSLT 2023 Marathi - Hindi Low Resource Speech Translation Task
Popis výsledku anglicky
This paper describes the systems submitted for Marathi to Hindi low-resource speech translation task. Our primary submission is based on an end-to-end direct speech translation system, whereas the contrastive one is a cascaded system. The backbone of both the systems is a Hindi-Marathi bilingual ASR system trained on 2790 hours of imperfect transcribed speech. The end-to-end speech translation system was directly initialized from the ASR, and then finetuned for direct speech translation with an auxiliary CTC loss for translation. The MT model for the cascaded system is initialized from a cross-lingual language model, which was then fine-tuned using 1.6 M parallel sentences. All our systems were trained from scratch on publicly available datasets. In the end, we use a language model to re-score the n-best hypotheses. Our primary submission achieved 30.5 and 39.6 BLEU whereas the contrastive system obtained 21.7 and 28.6 BLEU on official dev and test sets respectively. The paper also presents the analysis on several experiments that were conducted and outlines the strategies for improving speech translation in low-resource scenarios.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
20th International Conference on Spoken Language Translation, IWSLT 2023 - Proceedings of the Conference
ISBN
978-1-959429-84-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
227-234
Název nakladatele
Association for Computational Linguistics
Místo vydání
Toronto (in-person and online)
Místo konání akce
Toronto
Datum konání akce
9. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—