The IWSLT 2021 BUT Speech Translation Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU144029" target="_blank" >RIV/00216305:26230/21:PU144029 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2021.iwslt-1.7.pdf" target="_blank" >https://aclanthology.org/2021.iwslt-1.7.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2021.iwslt-1.7" target="_blank" >10.18653/v1/2021.iwslt-1.7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The IWSLT 2021 BUT Speech Translation Systems
Popis výsledku v původním jazyce
The paper describes BUTs English to German offline speech translation (ST) systems developed for IWSLT2021. They are based on jointly trained Automatic Speech Recognition- Machine Translation models. Their performances is evaluated on MustC-Common test set. In this work, we study their efficiency from the perspective of having a large amount of separate ASR training data and MT training data, and a smaller amount of speechtranslation training data. Large amounts of ASR and MT training data are utilized for pretraining the ASR and MT models. Speechtranslation data is used to jointly optimize ASR-MT models by defining an end-to-end differentiable path from speech to translations. For this purpose, we use the internal continuous representations from the ASR-decoder as the input to MT module. We show that speech translation can be further improved by training the ASR-decoder jointly with the MT-module using large amount of text-only MT training data. We also show significant improvements by training an ASR module capable of generating punctuated text, rather than leaving the punctuation task to the MT module.
Název v anglickém jazyce
The IWSLT 2021 BUT Speech Translation Systems
Popis výsledku anglicky
The paper describes BUTs English to German offline speech translation (ST) systems developed for IWSLT2021. They are based on jointly trained Automatic Speech Recognition- Machine Translation models. Their performances is evaluated on MustC-Common test set. In this work, we study their efficiency from the perspective of having a large amount of separate ASR training data and MT training data, and a smaller amount of speechtranslation training data. Large amounts of ASR and MT training data are utilized for pretraining the ASR and MT models. Speechtranslation data is used to jointly optimize ASR-MT models by defining an end-to-end differentiable path from speech to translations. For this purpose, we use the internal continuous representations from the ASR-decoder as the input to MT module. We show that speech translation can be further improved by training the ASR-decoder jointly with the MT-module using large amount of text-only MT training data. We also show significant improvements by training an ASR module capable of generating punctuated text, rather than leaving the punctuation task to the MT module.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 18th International Conference on Spoken Language Translation (IWSLT)
ISBN
978-1-7138-3378-9
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
75-83
Název nakladatele
Association for Computational Linguistics
Místo vydání
Bangkok, on-line
Místo konání akce
Bangkok (on-line)
Datum konání akce
5. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000694723100007