Usted: Improving ASR with a Unified Speech and Text Encoder-Decoder
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F22%3APU144907" target="_blank" >RIV/00216305:26230/22:PU144907 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9746554" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9746554</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP43922.2022.9746554" target="_blank" >10.1109/ICASSP43922.2022.9746554</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Usted: Improving ASR with a Unified Speech and Text Encoder-Decoder
Popis výsledku v původním jazyce
Improving end-to-end speech recognition by incorporating external text data has been a longstanding research topic. There has been a recent focus on training E2E ASR models that get the performance benefits of external text data without incurring the extra cost of evaluating an external language model at inference time. In this work, we propose training ASR model jointly with a set of text-to-text auxiliary tasks with which it shares a decoder and parts of the encoder. When we jointly train ASR and masked language model with the 960-hour Librispeech and Opensubtitles data respectively, we observe WER reductions of 16% and 20% on test-other and test-clean respectively over an ASR-only baseline without any extra cost at inference time, and reductions of 6% and 8% compared to a stronger MUTE-L baseline which trains the decoder with the same text data as our model. We achieve further improvements when we train masked language model on Librispeech data or when we use machine translation as the auxiliary task, without significantly sacrificing performance on the task itself.
Název v anglickém jazyce
Usted: Improving ASR with a Unified Speech and Text Encoder-Decoder
Popis výsledku anglicky
Improving end-to-end speech recognition by incorporating external text data has been a longstanding research topic. There has been a recent focus on training E2E ASR models that get the performance benefits of external text data without incurring the extra cost of evaluating an external language model at inference time. In this work, we propose training ASR model jointly with a set of text-to-text auxiliary tasks with which it shares a decoder and parts of the encoder. When we jointly train ASR and masked language model with the 960-hour Librispeech and Opensubtitles data respectively, we observe WER reductions of 16% and 20% on test-other and test-clean respectively over an ASR-only baseline without any extra cost at inference time, and reductions of 6% and 8% compared to a stronger MUTE-L baseline which trains the decoder with the same text data as our model. We achieve further improvements when we train masked language model on Librispeech data or when we use machine translation as the auxiliary task, without significantly sacrificing performance on the task itself.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISBN
978-1-6654-0540-9
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
8297-8301
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Singapore
Místo konání akce
Singapore
Datum konání akce
22. 5. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000864187908121