Variance-Aware Path Guiding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424722" target="_blank" >RIV/00216208:11320/20:10424722 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p9je9Nxo1a" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p9je9Nxo1a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3386569.3392441" target="_blank" >10.1145/3386569.3392441</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Variance-Aware Path Guiding
Popis výsledku v původním jazyce
Path guiding is a promising tool to improve the performance of path tracing algorithms. However, not much research has investigated what target densities a guiding method should strive to learn for optimal performance. Instead, most previous work pursues the zero-variance goal: The local decisions are guided under the assumption that all other decisions along the random walk will be sampled perfectly. In practice, however, many decisions are poorly guided, or not guided at all. Furthermore, learned distributions are often marginalized, e.g., by neglecting the BSDF. We present a generic procedure to derive theoretically optimal target densities for local path guiding. These densities account for variance in nested estimators, and marginalize provably well over, e.g., the BSDF. We apply our theory in two state-of-the-art rendering applications: a path guiding solution for unidirectional path tracing [Muller et al. 2017] and a guiding method for light source selection for the many lights problem [Vevoda et al. 2018]. In both cases, we observe significant improvements, especially on glossy surfaces. The implementations for both applications consist of trivial modifications to the original code base, without introducing any additional overhead.
Název v anglickém jazyce
Variance-Aware Path Guiding
Popis výsledku anglicky
Path guiding is a promising tool to improve the performance of path tracing algorithms. However, not much research has investigated what target densities a guiding method should strive to learn for optimal performance. Instead, most previous work pursues the zero-variance goal: The local decisions are guided under the assumption that all other decisions along the random walk will be sampled perfectly. In practice, however, many decisions are poorly guided, or not guided at all. Furthermore, learned distributions are often marginalized, e.g., by neglecting the BSDF. We present a generic procedure to derive theoretically optimal target densities for local path guiding. These densities account for variance in nested estimators, and marginalize provably well over, e.g., the BSDF. We apply our theory in two state-of-the-art rendering applications: a path guiding solution for unidirectional path tracing [Muller et al. 2017] and a guiding method for light source selection for the many lights problem [Vevoda et al. 2018]. In both cases, we observe significant improvements, especially on glossy surfaces. The implementations for both applications consist of trivial modifications to the original code base, without introducing any additional overhead.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Graphics
ISSN
0730-0301
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
151
Kód UT WoS článku
000583700300124
EID výsledku v databázi Scopus
2-s2.0-85090426047