Improving Parallel Data Identification using Iteratively Refined Sentence Alignments and Bilingual Mappings of Pre-trained Language Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426941" target="_blank" >RIV/00216208:11320/20:10426941 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/2020.wmt-1.110" target="_blank" >https://www.aclweb.org/anthology/2020.wmt-1.110</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving Parallel Data Identification using Iteratively Refined Sentence Alignments and Bilingual Mappings of Pre-trained Language Models
Popis výsledku v původním jazyce
The National Research Council of Canada's team submissions to the parallel corpus filtering task at the Fifth Conference on Machine Translation are based on two key components: (1) iteratively refined statistical sentence alignments for extracting sentence pairs from document pairs and (2) a crosslingual semantic textual similarity metric based on a pretrained multilingual language model, XLM-RoBERTa, with bilingual mappings learnt from a minimal amount of clean parallel data for scoring the parallelism of the extracted sentence pairs. The translation quality of the neural machine translation systems trained and fine-tuned on the parallel data extracted by our submissions improved significantly when compared to the organizers' LASER-based baseline, a sentence-embedding method that worked well last year. For re-aligning the sentences in the document pairs (component 1), our statistical approach has outperformed the current state-of-the-art neural approach in this low-resource context.
Název v anglickém jazyce
Improving Parallel Data Identification using Iteratively Refined Sentence Alignments and Bilingual Mappings of Pre-trained Language Models
Popis výsledku anglicky
The National Research Council of Canada's team submissions to the parallel corpus filtering task at the Fifth Conference on Machine Translation are based on two key components: (1) iteratively refined statistical sentence alignments for extracting sentence pairs from document pairs and (2) a crosslingual semantic textual similarity metric based on a pretrained multilingual language model, XLM-RoBERTa, with bilingual mappings learnt from a minimal amount of clean parallel data for scoring the parallelism of the extracted sentence pairs. The translation quality of the neural machine translation systems trained and fine-tuned on the parallel data extracted by our submissions improved significantly when compared to the organizers' LASER-based baseline, a sentence-embedding method that worked well last year. For re-aligning the sentences in the document pairs (component 1), our statistical approach has outperformed the current state-of-the-art neural approach in this low-resource context.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů