Automatic Resource Augmentation for Machine Translation in Low Resource Language: EnIndic Corpus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AQ23BRT38" target="_blank" >RIV/00216208:11320/23:Q23BRT38 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3617371" target="_blank" >https://dl.acm.org/doi/10.1145/3617371</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3617371" target="_blank" >10.1145/3617371</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Resource Augmentation for Machine Translation in Low Resource Language: EnIndic Corpus
Popis výsledku v původním jazyce
"Parallel corpus is the primary ingredient of machine translation. It is required to train the statistical machine translation (SMT) and neural machine translation (NMT) systems. There is a lack of good quality parallel corpus for Hindi to English. Comparable corpora for a given language pair are comparatively easy to find, but this cannot be used directly in SMT or NMT systems. As a result, we generate a parallel corpus from the comparable corpus. For this purpose, the sentences (which are translations of each other) are mined from the comparable corpus to prepare the parallel corpus. The proposed algorithm uses the length of the sentence and word translation model to align sentence pairs that are translations of each other. Then, the sentence pairs that are poor translations of each other (measured by a similarity score based on IBM model 1 translation probability) are filtered out. We apply this algorithm to comparable corpora, which are crawled from speeches of the President and Vice-President of India, and mined parallel corpora out of them. The prepared parallel corpus contains good quality aligned sentences (with 96.338% f-score). Subsequently, incorrect sentence pairs are filtered out manually to make the corpus in qualitative practical use. Finally, we gather various sentences from different sources to prepare the EnIndic corpus, which comprises 1,656,207 English-Hindi sentence pairs (miscellaneous domain). We have deployed this prepared largest English-Hindi parallel corpus at https://github.com/debajyoty/EnIndic.git and the source code at https://github.com/debajyoty/EnIndicSourceCode.git."
Název v anglickém jazyce
Automatic Resource Augmentation for Machine Translation in Low Resource Language: EnIndic Corpus
Popis výsledku anglicky
"Parallel corpus is the primary ingredient of machine translation. It is required to train the statistical machine translation (SMT) and neural machine translation (NMT) systems. There is a lack of good quality parallel corpus for Hindi to English. Comparable corpora for a given language pair are comparatively easy to find, but this cannot be used directly in SMT or NMT systems. As a result, we generate a parallel corpus from the comparable corpus. For this purpose, the sentences (which are translations of each other) are mined from the comparable corpus to prepare the parallel corpus. The proposed algorithm uses the length of the sentence and word translation model to align sentence pairs that are translations of each other. Then, the sentence pairs that are poor translations of each other (measured by a similarity score based on IBM model 1 translation probability) are filtered out. We apply this algorithm to comparable corpora, which are crawled from speeches of the President and Vice-President of India, and mined parallel corpora out of them. The prepared parallel corpus contains good quality aligned sentences (with 96.338% f-score). Subsequently, incorrect sentence pairs are filtered out manually to make the corpus in qualitative practical use. Finally, we gather various sentences from different sources to prepare the EnIndic corpus, which comprises 1,656,207 English-Hindi sentence pairs (miscellaneous domain). We have deployed this prepared largest English-Hindi parallel corpus at https://github.com/debajyoty/EnIndic.git and the source code at https://github.com/debajyoty/EnIndicSourceCode.git."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"ACM Transactions on Asian and Low-Resource Language Information Processing"
ISSN
2375-4699
e-ISSN
—
Svazek periodika
""
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—