Exploring Web-based Translation Resources Applied to Hindi-English Cross-Lingual Information Retrieval
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AB6G3C78B" target="_blank" >RIV/00216208:11320/23:B6G3C78B - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3569010" target="_blank" >https://dl.acm.org/doi/10.1145/3569010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3569010" target="_blank" >10.1145/3569010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring Web-based Translation Resources Applied to Hindi-English Cross-Lingual Information Retrieval
Popis výsledku v původním jazyce
"Internet users perceive a multilingual web but are unfamiliar with it due to communication in their regional language called Cross-Lingual Information Retrieval (CLIR). In CLIR, a translation technique is used to translate the user queries into the target documents language. Conventional translation techniques are based on either a manual dictionary or a parallel corpus. While the trending Statistical Machine Translation (SMT) and Neural Machine Translation (NMT) techniques are trained on a parallel corpus. NMT is not so mature for Hindi-English translation, according to the literature, SMT performs better than the NMT. SMT provides a static translation due to the limited vocabularies in the available parallel corpus. It may not provide the translations for missing or unseen words while the web provides a dynamic interface where multiple users are updating information at the same time. The web may provide the translations for missing or unseen words, therefore, the web is effectively used for technically developed languages like English, German, Spanish, Russian, and Chinese. In this paper, different web resources such as Wikipedia, Hindi WordNet & Indo WordNet, ConceptNet, and online dictionary-based translation techniques are proposed and applied to Hindi-English CLIR. Wikipedia-based translation approach incorporates three modules, i.e., exactly matched, partially matched, and disambiguation to address the issues of wrong inter-wiki links, partially matched terms, and ambiguous articles. Hindi WordNet & Indo WorNet attribute ”English synset” and ConceptNet attributes ”Related term” & ”Synonymy” are used for obtaining translations. Further, WordNet path similarity is used to disambiguate translations. Various online dictionaries are available that return multiple relevant and irrelevant translations. The proposed approaches are compared to the SMT where the Wikipedia-based approach achieves approximately similar mean average precision to SMT."
Název v anglickém jazyce
Exploring Web-based Translation Resources Applied to Hindi-English Cross-Lingual Information Retrieval
Popis výsledku anglicky
"Internet users perceive a multilingual web but are unfamiliar with it due to communication in their regional language called Cross-Lingual Information Retrieval (CLIR). In CLIR, a translation technique is used to translate the user queries into the target documents language. Conventional translation techniques are based on either a manual dictionary or a parallel corpus. While the trending Statistical Machine Translation (SMT) and Neural Machine Translation (NMT) techniques are trained on a parallel corpus. NMT is not so mature for Hindi-English translation, according to the literature, SMT performs better than the NMT. SMT provides a static translation due to the limited vocabularies in the available parallel corpus. It may not provide the translations for missing or unseen words while the web provides a dynamic interface where multiple users are updating information at the same time. The web may provide the translations for missing or unseen words, therefore, the web is effectively used for technically developed languages like English, German, Spanish, Russian, and Chinese. In this paper, different web resources such as Wikipedia, Hindi WordNet & Indo WordNet, ConceptNet, and online dictionary-based translation techniques are proposed and applied to Hindi-English CLIR. Wikipedia-based translation approach incorporates three modules, i.e., exactly matched, partially matched, and disambiguation to address the issues of wrong inter-wiki links, partially matched terms, and ambiguous articles. Hindi WordNet & Indo WorNet attribute ”English synset” and ConceptNet attributes ”Related term” & ”Synonymy” are used for obtaining translations. Further, WordNet path similarity is used to disambiguate translations. Various online dictionaries are available that return multiple relevant and irrelevant translations. The proposed approaches are compared to the SMT where the Wikipedia-based approach achieves approximately similar mean average precision to SMT."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"ACM Transactions on Asian and Low-Resource Language Information Processing"
ISSN
2375-4699
e-ISSN
—
Svazek periodika
""
Číslo periodika v rámci svazku
2023-9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—