Unsupervised Cross-Lingual Part-of-Speech Tagging for Truly Low-Resource Scenarios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426956" target="_blank" >RIV/00216208:11320/20:10426956 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/2020.emnlp-main.391" target="_blank" >https://www.aclweb.org/anthology/2020.emnlp-main.391</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unsupervised Cross-Lingual Part-of-Speech Tagging for Truly Low-Resource Scenarios
Popis výsledku v původním jazyce
We describe a fully unsupervised cross-lingual transfer approach for part-of-speech (POS) tagging under a truly low resource scenario. We assume access to parallel translations between the target language and one or more source languages for which POS taggers are available. We use the Bible as parallel data in our experiments: small size, out-of-domain and covering many diverse languages. Our approach innovates in three ways: 1) a robust approach of selecting training instances via cross-lingual annotation projection that exploits best practices of unsupervised type and token constraints, word-alignment confidence and density of projected POS, 2) a Bi-LSTM architecture that uses contextualized word embeddings, affix embeddings and hierarchical Brown clusters, and 3) an evaluation on 12 diverse languages in terms of language family and morphological typology. In spite of the use of limited and out-of-domain parallel data, our experiments demonstrate significant improvements in accuracy over previous work. In addition, we show that using multi-source information, either via projection or output combination, improves the performance for most target languages.
Název v anglickém jazyce
Unsupervised Cross-Lingual Part-of-Speech Tagging for Truly Low-Resource Scenarios
Popis výsledku anglicky
We describe a fully unsupervised cross-lingual transfer approach for part-of-speech (POS) tagging under a truly low resource scenario. We assume access to parallel translations between the target language and one or more source languages for which POS taggers are available. We use the Bible as parallel data in our experiments: small size, out-of-domain and covering many diverse languages. Our approach innovates in three ways: 1) a robust approach of selecting training instances via cross-lingual annotation projection that exploits best practices of unsupervised type and token constraints, word-alignment confidence and density of projected POS, 2) a Bi-LSTM architecture that uses contextualized word embeddings, affix embeddings and hierarchical Brown clusters, and 3) an evaluation on 12 diverse languages in terms of language family and morphological typology. In spite of the use of limited and out-of-domain parallel data, our experiments demonstrate significant improvements in accuracy over previous work. In addition, we show that using multi-source information, either via projection or output combination, improves the performance for most target languages.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů