Ixamed's submission description for WMT20 Biomedical shared task: benefits and limitations of using terminologies for domain adaptation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426975" target="_blank" >RIV/00216208:11320/20:10426975 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/2020.wmt-1.96" target="_blank" >https://www.aclweb.org/anthology/2020.wmt-1.96</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ixamed's submission description for WMT20 Biomedical shared task: benefits and limitations of using terminologies for domain adaptation
Popis výsledku v původním jazyce
In this paper we describe the systems developed at Ixa for our participation in WMT20 Biomedical shared task in three language pairs, en-eu, en-es and es-en. When defining our approach, we have put the focus on making an efficient use of corpora recently compiled for training Machine Translation (MT) systems to translate Covid-19 related text, as well as reusing previously compiled corpora and developed systems for biomedical or clinical domain. Regarding the techniques used, we base on the findings from our previous works for translating clinical texts into Basque, making use of clinical terminology for adapting the MT systems to the clinical domain. However, after manually inspecting some of the outputs generated by our systems, for most of the submissions we end up using the system trained only with the basic corpus, since the systems including the clinical terminologies generated outputs shorter in length than the corresponding references. Thus, we present simple baselines for translating abstracts between English and Spanish (en/es); while for translating abstracts and terms from English into Basque (en-eu), we concatenate the best en-es system for each kind of text with our es-eu system. We present automatic evaluation results in terms of BLEU scores, and analyse the effect of including clinical terminology on the average sentence length of the generated outputs. Following the recent recommendations for a responsible use of GPUs for NLP research, we include an estimation of the generated CO2 emissions, based on the power consumed for training the MT systems.
Název v anglickém jazyce
Ixamed's submission description for WMT20 Biomedical shared task: benefits and limitations of using terminologies for domain adaptation
Popis výsledku anglicky
In this paper we describe the systems developed at Ixa for our participation in WMT20 Biomedical shared task in three language pairs, en-eu, en-es and es-en. When defining our approach, we have put the focus on making an efficient use of corpora recently compiled for training Machine Translation (MT) systems to translate Covid-19 related text, as well as reusing previously compiled corpora and developed systems for biomedical or clinical domain. Regarding the techniques used, we base on the findings from our previous works for translating clinical texts into Basque, making use of clinical terminology for adapting the MT systems to the clinical domain. However, after manually inspecting some of the outputs generated by our systems, for most of the submissions we end up using the system trained only with the basic corpus, since the systems including the clinical terminologies generated outputs shorter in length than the corresponding references. Thus, we present simple baselines for translating abstracts between English and Spanish (en/es); while for translating abstracts and terms from English into Basque (en-eu), we concatenate the best en-es system for each kind of text with our es-eu system. We present automatic evaluation results in terms of BLEU scores, and analyse the effect of including clinical terminology on the average sentence length of the generated outputs. Following the recent recommendations for a responsible use of GPUs for NLP research, we include an estimation of the generated CO2 emissions, based on the power consumed for training the MT systems.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů