Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dependency Parsing for Urdu: Resources, Conversions and Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426987" target="_blank" >RIV/00216208:11320/20:10426987 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.aclweb.org/anthology/2020.lrec-1.640" target="_blank" >https://www.aclweb.org/anthology/2020.lrec-1.640</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dependency Parsing for Urdu: Resources, Conversions and Learning

  • Popis výsledku v původním jazyce

    This paper adds to the available resources for the under-resourced language Urdu by converting different types of existing treebanks for Urdu into a common format that is based on Universal Dependencies. We present comparative results for training two dependency parsers, the MaltParser and a transition-based BiLSTM parser on this new resource. The BiLSTM parser incorporates word embeddings which improve the parsing results significantly. The BiLSTM parser outperforms the MaltParser with a UAS of 89.6 and an LAS of 84.2 with respect to our standardized treebank resource.

  • Název v anglickém jazyce

    Dependency Parsing for Urdu: Resources, Conversions and Learning

  • Popis výsledku anglicky

    This paper adds to the available resources for the under-resourced language Urdu by converting different types of existing treebanks for Urdu into a common format that is based on Universal Dependencies. We present comparative results for training two dependency parsers, the MaltParser and a transition-based BiLSTM parser on this new resource. The BiLSTM parser incorporates word embeddings which improve the parsing results significantly. The BiLSTM parser outperforms the MaltParser with a UAS of 89.6 and an LAS of 84.2 with respect to our standardized treebank resource.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů