Annotation Projection-based Dependency Parser Development for Nepali
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AYCYJ96EI" target="_blank" >RIV/00216208:11320/23:YCYJ96EI - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/summary/13f0cd58-cefa-451c-b019-593f55164d36-bb92386a/relevance/1" target="_blank" >https://www.webofscience.com/wos/woscc/summary/13f0cd58-cefa-451c-b019-593f55164d36-bb92386a/relevance/1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3542696" target="_blank" >10.1145/3542696</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Annotation Projection-based Dependency Parser Development for Nepali
Popis výsledku v původním jazyce
"Building computational resources and tools for the under-resourced languages is strenuous for any Natural Language Processing task. This article presents the first dependency parser for an under-resourced Indian language, Nepali. A prerequisite for developing a parser for a language is a corpus annotated with the desired linguistic representations known as a treebank. With an aim of cross-lingual learning and typological research, we use a Bengali treebank to build a Bengali-Nepali parallel corpus and apply the method of annotation projection from the Bengali treebank to build a treebank for Nepali. With the developed treebank, MaltParser (with all algorithms for projective dependency structures) and a Neural network-based parser have been used to build Nepali parser models. The Neural network-based parser produced state-of-the-art results with 81.2 Unlabeled Attachment Score, 73.2 Label Accuracy, and 66.1 Labeled Attachment Score on the gold test data. The parser models have also been evaluated with the predicted Part-of-speech (POS)-tagged test data. A statistical POS tagger using Conditional Random Field has been developed for predicting the POS tags of the test data."
Název v anglickém jazyce
Annotation Projection-based Dependency Parser Development for Nepali
Popis výsledku anglicky
"Building computational resources and tools for the under-resourced languages is strenuous for any Natural Language Processing task. This article presents the first dependency parser for an under-resourced Indian language, Nepali. A prerequisite for developing a parser for a language is a corpus annotated with the desired linguistic representations known as a treebank. With an aim of cross-lingual learning and typological research, we use a Bengali treebank to build a Bengali-Nepali parallel corpus and apply the method of annotation projection from the Bengali treebank to build a treebank for Nepali. With the developed treebank, MaltParser (with all algorithms for projective dependency structures) and a Neural network-based parser have been used to build Nepali parser models. The Neural network-based parser produced state-of-the-art results with 81.2 Unlabeled Attachment Score, 73.2 Label Accuracy, and 66.1 Labeled Attachment Score on the gold test data. The parser models have also been evaluated with the predicted Part-of-speech (POS)-tagged test data. A statistical POS tagger using Conditional Random Field has been developed for predicting the POS tags of the test data."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING"
ISSN
2375-4699
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000963394900005
EID výsledku v databázi Scopus
—