Nepali Dependency Parsing Using Transfer Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A6MQCRAW5" target="_blank" >RIV/00216208:11320/25:6MQCRAW5 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85214108638&doi=10.1007%2f978-981-97-8666-4_15&partnerID=40&md5=ffb189c4bee648c546cf98f15360a9c8" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85214108638&doi=10.1007%2f978-981-97-8666-4_15&partnerID=40&md5=ffb189c4bee648c546cf98f15360a9c8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-8666-4_15" target="_blank" >10.1007/978-981-97-8666-4_15</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nepali Dependency Parsing Using Transfer Learning
Popis výsledku v původním jazyce
This paper presents a dependency parser developed for the low resource Nepali language along with the creation of annotated dataset conforming to Universal Dependencies treebank. The created dataset is used to train along with other languages to create a neural dependency parser based on graph-based parsing. Training is done in the state-of-the art graph-based neural architecture that makes use of multilingual BERT embeddings. Various experiments have been conducted varying the source training languages and dataset sizes. In zero-shot case for Nepali language the UAS and LAS scores obtained are 59.52 and 47.47 respectively, whereas for few-shot case the scores are 80.73 and 72.67 respectively. This work presents a good enough baseline as well as high quality data that can now be used for further research in the direction of dependency parsing for Nepali language. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Název v anglickém jazyce
Nepali Dependency Parsing Using Transfer Learning
Popis výsledku anglicky
This paper presents a dependency parser developed for the low resource Nepali language along with the creation of annotated dataset conforming to Universal Dependencies treebank. The created dataset is used to train along with other languages to create a neural dependency parser based on graph-based parsing. Training is done in the state-of-the art graph-based neural architecture that makes use of multilingual BERT embeddings. Various experiments have been conducted varying the source training languages and dataset sizes. In zero-shot case for Nepali language the UAS and LAS scores obtained are 59.52 and 47.47 respectively, whereas for few-shot case the scores are 80.73 and 72.67 respectively. This work presents a good enough baseline as well as high quality data that can now be used for further research in the direction of dependency parsing for Nepali language. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
8th International Conference on Information System Design and Intelligent Applications
ISBN
978-981978665-7
ISSN
2367-3370
e-ISSN
—
Počet stran výsledku
12
Strana od-do
179-190
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
—
Místo konání akce
Dubai
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—