Investigating Cross-Linguistic Adjective Ordering Tendencies with a Latent-Variable Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10427011" target="_blank" >RIV/00216208:11320/20:10427011 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/2020.emnlp-main.329" target="_blank" >https://www.aclweb.org/anthology/2020.emnlp-main.329</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigating Cross-Linguistic Adjective Ordering Tendencies with a Latent-Variable Model
Popis výsledku v původním jazyce
Across languages, multiple consecutive adjectives modifying a noun (e.g. “the big red dog”) follow certain unmarked ordering rules. While explanatory accounts have been put forward, much of the work done in this area has relied primarily on the intuitive judgment of native speakers, rather than on corpus data. We present the first purely corpus-driven model of multi-lingual adjective ordering in the form of a latent-variable model that can accurately order adjectives across 24 different languages, even when the training and testing languages are different. We utilize this novel statistical model to provide strong converging evidence for the existence of universal, cross-linguistic, hierarchical adjective ordering tendencies.
Název v anglickém jazyce
Investigating Cross-Linguistic Adjective Ordering Tendencies with a Latent-Variable Model
Popis výsledku anglicky
Across languages, multiple consecutive adjectives modifying a noun (e.g. “the big red dog”) follow certain unmarked ordering rules. While explanatory accounts have been put forward, much of the work done in this area has relied primarily on the intuitive judgment of native speakers, rather than on corpus data. We present the first purely corpus-driven model of multi-lingual adjective ordering in the form of a latent-variable model that can accurately order adjectives across 24 different languages, even when the training and testing languages are different. We utilize this novel statistical model to provide strong converging evidence for the existence of universal, cross-linguistic, hierarchical adjective ordering tendencies.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů