Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Solving for muscle blending using data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10432183" target="_blank" >RIV/00216208:11320/20:10432183 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Yih_1mqa4l" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Yih_1mqa4l</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cag.2020.09.005" target="_blank" >10.1016/j.cag.2020.09.005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Solving for muscle blending using data

  • Popis výsledku v původním jazyce

    Modeling of the human face is a challenging yet important problem in computer graphics. Building accurate muscle models for physics-based simulation of the face is a problem that either requires a lot of manual effort or drastic over-parameterization of the muscles to achieve desirable results. In this work, we reduce the number of parameters required to build personalized muscle models by taking into account the blending of the fine muscles and passive tissue when we solve for the muscle activations. We begin by adapting an anatomical template model to a neutral scan of a subject. Then, we solve an inverse physics problem using several scans simultaneously to solve for both the muscle activations and the geometry matrix representing blending of the muscles. Finally, we demonstrate that this geometry matrix can be used on new, previously unseen scans to solve for only the muscle activations. This greatly reduces the number of parameters that must be solved for compared to previous works while requiring no additional manual effort in constructing the muscles. (C) 2020 Elsevier Ltd. All rights reserved.

  • Název v anglickém jazyce

    Solving for muscle blending using data

  • Popis výsledku anglicky

    Modeling of the human face is a challenging yet important problem in computer graphics. Building accurate muscle models for physics-based simulation of the face is a problem that either requires a lot of manual effort or drastic over-parameterization of the muscles to achieve desirable results. In this work, we reduce the number of parameters required to build personalized muscle models by taking into account the blending of the fine muscles and passive tissue when we solve for the muscle activations. We begin by adapting an anatomical template model to a neutral scan of a subject. Then, we solve an inverse physics problem using several scans simultaneously to solve for both the muscle activations and the geometry matrix representing blending of the muscles. Finally, we demonstrate that this geometry matrix can be used on new, previously unseen scans to solve for only the muscle activations. This greatly reduces the number of parameters that must be solved for compared to previous works while requiring no additional manual effort in constructing the muscles. (C) 2020 Elsevier Ltd. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers and Graphics

  • ISSN

    0097-8493

  • e-ISSN

  • Svazek periodika

    2020

  • Číslo periodika v rámci svazku

    92

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

    67-75

  • Kód UT WoS článku

    000605063100008

  • EID výsledku v databázi Scopus