Solving for muscle blending using data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10432183" target="_blank" >RIV/00216208:11320/20:10432183 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Yih_1mqa4l" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Yih_1mqa4l</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cag.2020.09.005" target="_blank" >10.1016/j.cag.2020.09.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solving for muscle blending using data
Popis výsledku v původním jazyce
Modeling of the human face is a challenging yet important problem in computer graphics. Building accurate muscle models for physics-based simulation of the face is a problem that either requires a lot of manual effort or drastic over-parameterization of the muscles to achieve desirable results. In this work, we reduce the number of parameters required to build personalized muscle models by taking into account the blending of the fine muscles and passive tissue when we solve for the muscle activations. We begin by adapting an anatomical template model to a neutral scan of a subject. Then, we solve an inverse physics problem using several scans simultaneously to solve for both the muscle activations and the geometry matrix representing blending of the muscles. Finally, we demonstrate that this geometry matrix can be used on new, previously unseen scans to solve for only the muscle activations. This greatly reduces the number of parameters that must be solved for compared to previous works while requiring no additional manual effort in constructing the muscles. (C) 2020 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Solving for muscle blending using data
Popis výsledku anglicky
Modeling of the human face is a challenging yet important problem in computer graphics. Building accurate muscle models for physics-based simulation of the face is a problem that either requires a lot of manual effort or drastic over-parameterization of the muscles to achieve desirable results. In this work, we reduce the number of parameters required to build personalized muscle models by taking into account the blending of the fine muscles and passive tissue when we solve for the muscle activations. We begin by adapting an anatomical template model to a neutral scan of a subject. Then, we solve an inverse physics problem using several scans simultaneously to solve for both the muscle activations and the geometry matrix representing blending of the muscles. Finally, we demonstrate that this geometry matrix can be used on new, previously unseen scans to solve for only the muscle activations. This greatly reduces the number of parameters that must be solved for compared to previous works while requiring no additional manual effort in constructing the muscles. (C) 2020 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Graphics
ISSN
0097-8493
e-ISSN
—
Svazek periodika
2020
Číslo periodika v rámci svazku
92
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
67-75
Kód UT WoS článku
000605063100008
EID výsledku v databázi Scopus
—