Tutte's dichromate for signed graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10421424" target="_blank" >RIV/00216208:11320/21:10421424 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SjtMij5uZc" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SjtMij5uZc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2020.09.021" target="_blank" >10.1016/j.dam.2020.09.021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tutte's dichromate for signed graphs
Popis výsledku v původním jazyce
We introduce the trivariate Tutte polynomial of a signed graph as an invariant of signed graphs up to vertex switching that contains among its evaluations the number of proper colorings and the number of nowhere-zero flows. In this, it parallels the Tutte polynomial of a graph, which contains the chromatic polynomial and flow polynomial as specializations. The number of nowhere-zero tensions (for signed graphs they are not simply related to proper colorings as they are for graphs) is given in terms of evaluations of the trivariate Tutte polynomial at two distinct points. Interestingly, the bivariate dichromatic polynomial of a biased graph, shown by Zaslaysky to share many similar properties with the Tutte polynomial of a graph, does not in general yield the number of nowhere-zero flows of a signed graph. Therefore the "dichromate" for signed graphs (our trivariate Tutte polynomial) differs from the dichromatic polynomial (the rank-size generating function). The trivariate Tutte polynomial of a signed graph can be extended to an invariant of ordered pairs of matroids on a common ground set - for a signed graph, the cycle matroid of its underlying graph and its frame matroid form the relevant pair of matroids. This invariant is the canonically defined Tutte polynomial of matroid pairs on a common ground set in the sense of a recent paper of Krajewski, Moffatt and Tanasa, and was first studied by Welsh and Kayibi as a four-variable linking polynomial of a matroid pair on a common ground set. (C) 2020 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Tutte's dichromate for signed graphs
Popis výsledku anglicky
We introduce the trivariate Tutte polynomial of a signed graph as an invariant of signed graphs up to vertex switching that contains among its evaluations the number of proper colorings and the number of nowhere-zero flows. In this, it parallels the Tutte polynomial of a graph, which contains the chromatic polynomial and flow polynomial as specializations. The number of nowhere-zero tensions (for signed graphs they are not simply related to proper colorings as they are for graphs) is given in terms of evaluations of the trivariate Tutte polynomial at two distinct points. Interestingly, the bivariate dichromatic polynomial of a biased graph, shown by Zaslaysky to share many similar properties with the Tutte polynomial of a graph, does not in general yield the number of nowhere-zero flows of a signed graph. Therefore the "dichromate" for signed graphs (our trivariate Tutte polynomial) differs from the dichromatic polynomial (the rank-size generating function). The trivariate Tutte polynomial of a signed graph can be extended to an invariant of ordered pairs of matroids on a common ground set - for a signed graph, the cycle matroid of its underlying graph and its frame matroid form the relevant pair of matroids. This invariant is the canonically defined Tutte polynomial of matroid pairs on a common ground set in the sense of a recent paper of Krajewski, Moffatt and Tanasa, and was first studied by Welsh and Kayibi as a four-variable linking polynomial of a matroid pair on a common ground set. (C) 2020 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Svazek periodika
289
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
32
Strana od-do
153-184
Kód UT WoS článku
000596823800014
EID výsledku v databázi Scopus
2-s2.0-85092692997