Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The canonical Tutte polynomial for signed graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404768" target="_blank" >RIV/00216208:11320/19:10404768 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jGfJCQXusX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jGfJCQXusX</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The canonical Tutte polynomial for signed graphs

  • Popis výsledku v původním jazyce

    We construct a new polynomial invariant for signed graphs, the trivariate Tutte polynomial, which contains among its evaluations the number of proper colorings and the number of nowhere-zero flows. In this, it parallels the Tutte polynomial of a graph, which contains the chromatic polynomial and flow polynomial as specializations. While the Tutte polynomial of a graph is equivalently defined as the dichromatic polynomial or Whitney rank polynomial, the dichromatic polynomial of a signed graph (defined more widely for biased graphs by Zaslavsky) does not, by contrast, give the number of nowhere-zero flows as an evaluation in general. The trivariate Tutte polynomial contains Zaslavsky&apos;s dichromatic polynomial as a specialization. Furthermore, the trivariate Tutte polynomial gives as an evaluation the number of proper colorings of a signed graph under a more general sense of signed graph coloring in which colors are elements of an arbitrary finite set equipped with an involution.

  • Název v anglickém jazyce

    The canonical Tutte polynomial for signed graphs

  • Popis výsledku anglicky

    We construct a new polynomial invariant for signed graphs, the trivariate Tutte polynomial, which contains among its evaluations the number of proper colorings and the number of nowhere-zero flows. In this, it parallels the Tutte polynomial of a graph, which contains the chromatic polynomial and flow polynomial as specializations. While the Tutte polynomial of a graph is equivalently defined as the dichromatic polynomial or Whitney rank polynomial, the dichromatic polynomial of a signed graph (defined more widely for biased graphs by Zaslavsky) does not, by contrast, give the number of nowhere-zero flows as an evaluation in general. The trivariate Tutte polynomial contains Zaslavsky&apos;s dichromatic polynomial as a specialization. Furthermore, the trivariate Tutte polynomial gives as an evaluation the number of proper colorings of a signed graph under a more general sense of signed graph coloring in which colors are elements of an arbitrary finite set equipped with an involution.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-21082S" target="_blank" >GA19-21082S: Grafy a jejich algebraické vlastnosti</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Mathematica Universitatis Comenianae

  • ISSN

    0231-6986

  • e-ISSN

  • Svazek periodika

    88

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    SK - Slovenská republika

  • Počet stran výsledku

    6

  • Strana od-do

    749-754

  • Kód UT WoS článku

    000484349000061

  • EID výsledku v databázi Scopus